English
新闻公告
More
化学进展 2014, Vol. 26 Issue (12): 1942-1961 DOI: 10.7536/PC140732 前一篇   后一篇

• 综述与评论 •

非官能化烯烃的不对称催化环氧化反应

牛凡凡1, 聂昌军2, 陈勇1, 孙小玲*1   

  1. 1. 上海应用技术学院化学与环境工程学院 上海 201418;
    2. 上海恒安聚氨酯股份有限公司 上海 201512
  • 收稿日期:2014-07-01 修回日期:2014-09-01 出版日期:2014-12-15 发布日期:2014-12-19
  • 通讯作者: 孙小玲 E-mail:xiaolingsun1@msn.com
  • 基金资助:

    上海市自然科学基金项目(No. 14ZR1440900)和上海市联盟计划项目(No. LM201336)资助

Asymmetric Catalytic Epoxidation of Unfunctionalized Olefins

Niu Fanfan1, Nie Changjun2, Chen Yong1, Sun Xiaoling*1   

  1. 1. School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China;
    2. Shanghai Hea Polyurethane Co., Ltd, Shanghai 201512, China
  • Received:2014-07-01 Revised:2014-09-01 Online:2014-12-15 Published:2014-12-19
  • Supported by:

    The work was supported by the Shanghai Natural Science Foundation (No. 14ZR1440900) and Shanghai Alliance Program (No. LM201336)

手性环氧化合物是有机合成的重要中间体,由于三元杂环的张力使其很容易与各种亲核试剂作用,通过官能团转化反应,可以从环氧化物制备一系列不同结构的手性化合物.烯烃的不对称环氧化反应可以使潜手性的烯烃转化为带有手性碳的环氧化合物,在医药、农药、香料等精细化学品的合成上具有非常重要的意义.非官能化烯烃经手性催化剂诱导的不对称环氧化反应是获得光学纯手性化合物的有效方法.这些手性催化剂包括生物酶、金属卟啉、金属Salen配合物以及有机小分子催化剂.本文综述了这几种催化剂催化的非官能化烯烃不对称催化环氧化反应近几年的研究进展,介绍了催化剂的催化机理,并就其发展趋势提出了构想.

Due to the great importance of chiral compounds in the manufacture of drugs, vitamins, fragrances, and optical materials, the synthesis of chiral building blocks has attracted special attention. Chiral epoxides are among the most important intermediates that can react with a variety of reagents because of the polarity and ring-strain of the epoxide ring. Asymmetric epoxidation of olefins can convert prochiral olefins into epoxides with chiral carbon, which can be readily converted into various chiral compounds via regioselective ring-opening or functional group transformation reactions. Asymmetric synthesis reactions have been mainly induced by substrates or catalysts. The asymmetric synthesis induced by chiral catalysts is one of the most attractive and competitive areas in modern organic synthesis, because it can get a lot of new optical active substances using catalytic amount of chiral compounds. Asymmetric catalytic epoxidation of unfunctionalized olefins induced by the chiral catalyst has been the most effective way to obtain optical pure chiral epoxides. These chiral catalysts include enzymes, metal porphyrins, Salen-Mn (Ⅲ) complexs and organocatalysts. Among them, the synthesis of metal porphyrins and Salen-Mn (Ⅲ) complexs is inspired by enzymes. The organcatalyst, which does not contain metal ions, is regarded as a low pollution and lower toxicity catalyst. Asymmetric epoxidation of olefins catalyzed by these catalysts can get satisfactory yield and enantiomeric selectivity. Recent progress of enzymes, metal porphyrins, Salen-Mn (Ⅲ) complexs, and organcatalysts used for asymmetric epoxidation of olefins is reviewed. Moreover, the catalytic mechanisms and the development trend of this reaction are discussed.

Contents
1 Introduction
2 Enzyme-catalyzed asymmetric olefin epoxidation
2.1 Monooxygenases
2.2 Peroxidases
2.3 Artificial metalloenzymes
3 Metal porphyrin-catalyzed asymmetric epoxidation of unfunctionalized olefins
4 Salen-Mn (Ⅲ) complex-catalyzed asymmetric epoxidation of unfunctionalized olefins
4.1 Unsupported Salen-Mn(Ⅲ) complex-catalyzed asymmetric epoxidation of unfunctionalized olefins
4.2 Supported Salen-Mn(Ⅲ) complex-catalyzed asymmetric epoxidation of unfunctionalized olefins
4.3 Application of ionic liquid in Salen-Mn (Ⅲ) complex-catalyzed olefin asymmetric epoxidation
4.4 The mechanism of olefin asymmetric epoxidation catalyzed by Salen-Mn(Ⅲ) catalysts
5 Organic small molecule-catalyzed olefin asymmetric epoxidation
5.1 Chiral ketone-catalyzed olefin asymmetric epoxidation
5.2 Chiral iminium-catalyzed olefin asymmetric epoxidation

中图分类号: 

()

[1] Collins A N, Sheldrake G N, Crosby J. Chirality in Industry. NY: Wiley, 1992. 303.
[2] Vries de E J, Janssen D B. Curr. Opin. Biotechnol., 2003, 14: 414.
[3] Kasai N, Suzuki T, Furukawa Y. J. Mol. Catal. B: Enzyme, 1998, 4: 237.
[4] 王积涛(Wang J T), 陈蓉(Chen R), 冯霄(feng X), 李月明(Li Y M).有机化学(Chin. J. Org. Chem.), 1998, 18(2): 97.
[5] 王歆燕(Wang X Y), 石鸿昌(Shi H C), 徐寿颐(Xu S Y). 有机化学(Chin. J. Org. Chem.), 2001, 21(12): 1102.
[6] 周智明(Zhou Z M), 李连友(Li L Y), 徐巧(Xu Q), 徐从煊(Xu C X).有机化学(Chin. J. Org. Chem.), 2005,25(4):347.
[7] 罗云飞(Luo Y F), 邹晓川(Zou X C), 傅相锴(Fu X K), 贾紫永(Jia Z Y), 黄雪梅(Huang X M).中国科学:化学(Scientia Sinica Chimica), 2011, 41(3): 433.
[8] 张治国(Zhang Z G), 王歆燕(Wang X Y),孙川(Sun C),石鸿昌(Shi H C). 有机化学(Chin. J. Org. Chem.), 2004, 24(1): 7.
[9] 郑炎松(Zhen Y S),田振锋(Tian Z F). 化学通报(Chemistry), 2002, 65(4): 261.
[10] 王春(Wang C), 高勇军(Gao Y J), 张英群(Zhang Y Q), 王志(Wang Z), 马晶军(Ma J J). 化学进展(Progress in Chemistry), 2006, 18(6), 761.
[11] Lee E Y, Shuler M L. Biotechnol. Bioeng., 2007, 98: 318.
[12] Archelas A, Furstoss R. Curr. Opin. Chem. Biol., 2001, 5: 112.
[13] Steinreiber A, Faber K. Curr. Opin. Biotechnol., 2001, 12: 552.
[14] 张玲玲(Zhang L L), 巴丽娜(Ba L N), 林章凛(Lin Z L), 朱玉山(Zhu Y S). 计算机与应用化学(Computers and Applied Chemistry), 2010, 1: 025.
[15] Ortiz de Montellano P R, Fruetel J A, Collins J R, Camper D L, Loew G H. J. Am. Chem. Soc., 1991, 113: 3195.
[16] Ruettinger R T, Fulco A J. J. Biol. Chem., 1981, 256: 5728.
[17] Wistuba D, Nowotny H P, Trager O, Schurig V. Chirality, 1989, 1: 127.
[18] Martinez C A, Stewart J D. Curr. Org. Chem., 2000, 4: 263.
[19] Kubo T, Peters M W, Meinhold P, Amold F H. Chemistry, 2006, 12: 1216.
[20] 吴襟(Wu J), 孙万儒(Sun W R). 生物工程进展(Progress in Biotechnology), 2001, 21(4): 234.
[21] Poulos T L, Raag R. Faseb. J., 1992, 6: 674.
[22] Raag R, Poulos T L. Biochemistry, 1991, 30: 2674.
[23] 李亚非(Li Y F), 王繁业(Wang F Y). 化学工业与工程技术(Journal of Chemical Industry & Engineering), 2007, 27(6):44.
[24] Bernasconi S, Orsini F, Sello G, Colmegna A, Galli E, Bestetti G. Tetrahedron Lett., 2000, 41: 9157.
[25] Panke S, Wubbolts M. G, Schmid A, Witholt B. Biotechnol. Bioeng., 2000, 69: 91.
[26] Bernasconi S, Orsini F, Sello G, Di Gennaro P. Tetrahedron: Asymmetry, 2004, 15: 1603.
[27] Park S M, Bae J W, Han J H, Lee E Y, Lee S G, Park S J. Microbiol. Biotechnol., 2006, 16: 1041.
[28] Kuhn D, Kholiq M A, Heinzle E, Buhler B. Schmid A. Green Chem., 2010, 12: 815.
[29] Panke S, Held M, Wubbolts M G, Witholt B, Schmid A. Biotechnol. Bioeng., 2002, 80: 33.
[30] Hofstetter K, Lutz J, Lang I, Witholt B, Schmid A. Angew. Chem. Int. Ed., 2004, 43: 2163.
[31] Hollmann F, Hofstetter K, Habicher T, Hauer B, Schmid A. J. Am. Chem. Soc., 2005, 127: 6540.
[32] Lin H, Liu Y, Wu Z L. Chem. Commun., 2011, 47: 2610.
[33] van Deurzen M P J, van Rantwijk F, Sheldon R A. Tetrahedron, 1997, 53: 13183.
[34] Colonna S, Gaggero N, Riehelmi C, Pasta P. Trends. Biotechnol., 1999, 17: 163.
[35] Adam W, Lzarus M, Saha-Moller C R, Weiehold O, Hoch U, Haring D, Schreier P. Adv. Biochem. Eng. Biotechnol., 1999, 63: 73.
[36] van Rantwijk F, Sheldon R A. Curr. Opin. Biotechnol., 2000, 11: 554.
[37] 智丽飞(Zhi L F), 蒋育澄(Jiang Y C), 胡满成(Hu M C), 李淑妮(Li S N). 化学进展(Progress in Chemistry), 2006, 18(9): 1150.
[38] 吴金跃(Wu J Y), 蒋育澄(Jiang Y C), 胡满成(Hu M C), 李淑妮(Li S N), 翟全国(Zhai Q G). 中国科学:化学(Scientia Sinica Chimica), 2010, 40(8): 1018.
[39] Hager L P, Lakner F J. J. Mol. Catal. B: Enzym., 1998, 5: 95.
[40] Hu S, Hager L P. Tetrahedron Lett., 1999, 40: 1641.
[41] Hwang S, Choi C Y, Lee E Y. J. Ind. Eng. Chem., 2010, 16: 1.
[42] 方唯硕(Fang W S), 程克棣(Cheng K D). 有机化学(Chin. J. Org. Chem.), 2002, 22(10): 710.
[43] Allain E J, Hager L P, Deng L, Jacobsen E N. J. Am. Chem. Soc., 1993, 115: 4415.
[44] Dembitsky V M. Tetrahedron, 2003, 59: 4701.
[45] Yi L, Steven M. Book of Abstracts, 219th ACS National Meeting, 2000.
[46] Kazlauskas R J, Okrasa K. Chem. Eur. J., 2006, 12: 1587.
[47] Keyhani J, Keyhani E, Zarchipour S, Tayefi-Nasrabadi H, Einollahi N. Biochem. Biophys. Acta, 2005, 1711: 312.
[48] Zou P, Schrempf H. Eur. J. Biochem., 2000, 267: 2840.
[49] 刘雪英(Liu X Y), 刘军涛(Liu J T), 冯爱青(Feng A Q), 欧军(Ou J), 陈亿新(Chen Y X). 广州化工(Guangzhou Chemical Industry), 2006, 34(1): 16.
[50] Guemgerich F P, Macdonald T L. Acc. Chem. Res. 1984, 17: 9.
[51] 周贤太(Zhou X T), 纪红兵(Ji H B), 裴丽霞(Pei L X), 佘远斌(She Y B), 徐建昌(Xu J C), 王乐夫(Wang Y F). 有机化学(Chin. J. Org. Chem.), 2007, 27(9): 1039.
[52] 王树军(Wang S J), 彭玉苓(Peng Y L). 化学进展(Progress in Chemistry), 2009, 21(7/8): 1515.
[53] Gorves J T, Nemo T E. J. Am. Chem. Soc., 1983, 105: 5786.
[54] Collman J P, Lee V J, Zhang X, Ibers J A, Brauman J I. J. Am. Chem. Soc., 1993, 115: 3834.
[55] Collman J P, Zhang X, Lee V J, Brauman J L. J. Chem. Soc. Chem. Commun., 1992, 1647.
[56] Che C M, Yu W Y. Pure Appl. Chem., 1999, 71: 281.
[57] Collman J P, Wang Z, Straumanis A, Quelquejeu M, Rose E. J. Am. Chem. Soc., 1999, 121: 460.
[58] 任奇志(Ren Q Z), Rose E, Andrioletti B, 阎陶(Yan T). 化学学报(Acta Chimica Sinica), 2006, 64(24): 2447.
[59] Ren Q Z, Hou Z S, Zhang H, Wang A Q, Liu S G. J. Porphyrins Phthalocyanines, 2009, 13: 1214.
[60] Zhang R, Yu W Y, Wong K Y, Che C M. J. Org. Chem., 2001, 66: 8145.
[61] Niwa T, Nakada M. J. Am. Chem. Soc., 2012, 134: 13538.
[62] Dai W, Li J, Li G S, Yang H, Wang L Y, Gao S. Org. Lett., 2013, 15: 4138.
[63] Meunier B. Chem. Rev. 1992, 92: 1411.
[64] Collman J P, Zhang X, Lee V J, Uffelman E S, Brauman J I. Science, 1993,261: 1404.
[65] Oyama S T. Mechanisms in Homogeneous and Heterogeneous Epoxidation Catalysis. UK: Elsevier Science, 2008.
[66] Garrison J M, Bruice T C. J. Am. Chem. Soc., 1989, 111:191.
[67] Curet-Arana M C, Emberger G A, Broadbelt L J, Snurr R Q. J. Mol. Catal. A: Chem., 2008, 285: 120.
[68] 刘均洪(Liu J H), 梁辉(Liang H). 化学工业与工程技术(Journal of Chemical Industry & Engineering), 2007, 28(1): 6.
[69] Zhang W, Loebach J L,Wilson S R, Jacobsen E N. J. Am. Chem. Soc., 1990, 112: 2801.
[70] Irie R, Noda K, Ito Y, Katsuki T. Tetrahedron Lett., 1990, 31: 7345.
[71] Lee N H, Muci A R, Jacobsen E N. Tetrahedron Lett., 1991, 32: 5055.
[72] Deng L, Jacobsen E N J. Org. Chem., 1992, 57: 4320.
[73] Chang S, Lee N H, Jacobsen E N. J. Org. Chem., 1993, 58: 6939.
[74] Chang S, Galvin J M, Jacobsen E N. J. Am. Chem. Soc., 1994, 116: 6937.
[75] Brandes B D, Jacobsen E N. J. Org. Chem., 1994, 59: 4378.
[76] Palucki M, Pospisil P J, Zhang W, Jacobsen E N. J. Am. Chem. Soc., 1994, 116: 9333.
[77] Brandes B D, Jacobsen E N. Tetrahedron Lett., 1995, 36: 5123.
[78] Liao S H, List B. Angew. Chem. Int. Ed., 2010, 49: 628.
[79] Huang X M, Fu X K, Wu X J, Jia Z Y. Tetrahedron Lett., 2013, 54: 4041.
[80] Huang X M, Fu X K, Jia Z Y, Miao Q, Wang G M. Sci. China. Chem., 2013, 56: 604.
[81] Suresh P, Srimurugan S, Dere T R, Venkat Ragavan R, Gopinath S V. Tetrahedron: Asymmetry, 2013, 24: 669.
[82] Wang X, Miao C X, Wang S F, Xia C G, Sun W. ChemCatChem, 2013, 5: 2489.
[83] Chen L H, Cheng F X, Jia L, Zhang A J, Wu J C, Tang N. Chirality, 2011, 23: 69.
[84] Luo R C, Tan R, Peng Z G, Zheng W G, Kong Y, Yin D H. J. Catal., 2012, 287: 170.
[85] Kuzniarska-Biernacka I, Silva A R, Carvalho A P, Pires J, Freire C. J. Mol. Catal. A: Chem., 2007, 278: 82.
[86] Serrano D P, Vargas J A. Appl. Catal. A: Gen., 2008, 335: 172.
[87] Sliva A R, Budarin V, Clark J H, Freire C, de Castro B. Carbon, 2007, 45: 1951.
[88] 屈育龙(Qu Y L), 胡道道(Hu D D). 高分子通报(Polymer Bulletin), 2005, 1: 31.
[89] De B B, Lohray B B, Sivaram S, Dhal P. Tetrahedron: Asymmetry, 1995, 6: 2105.
[90] Canali L, Cowan E, Deleuze H, Gibson C L, Sherrington D C. Chem. Commun., 1998, 2561.
[91] Reger T S, Janda K D. J. Am. Chem. Soc., 2000, 122: 6929.
[92] Beigi M, Haag R, Liese A. Adv. Synth. Catal., 2008, 350: 919.
[93] Davis M E. Nature, 2002, 417: 813.
[94] Mcmorn P, Huthings G J. Chem. Soc. Rev., 2004, 33: 108.
[95] Frunza L, Kosslick H, Landmesser H, Hoft E, Fricke R. J. Mol. Catal. A: Chem., 1997, 123: 179.
[96] Piaggio P, Langham C,ns: Oxidation). 北京:化学工业出版社(Beijing: Chemical Industry Press), 2008. 129.
[146] Engelhardt U, Linker T. Chem. Commun., 2005, 1152.
[147] Fu H, Look G C, Zhang W, Jacobsen E N, Wang C -H, J. Org. Chem., 1991, 56: 6497.
[148] Norrby P -O, Linde C, Åkermark B. J. Am. Chem. Chem. Soc.,1995, 117: 11035.
[149] Bäckvall J E, Bokman F, Blomberg M R A. J. Am. Chem. Chem. Soc., 1992, 114: 534
[150] Adam W, Mock-Knoblauch C, Saha-Möller C R, Herderich M. J. Am. Chem. Soc., 2000, 122: 9685.
[151 Adam W, Roschmann K J, Saha-Möller C R, Seebach D J. Am. Chem. Soc., 2002, 124: 5068.
[152] Bommarius A S, Riebel B R. Biocatalysis: Fundamentals and Applications. Wiley-VCH, 2004. 159.
[153] Nnoyori R. Asymmetric Catalysis in Organic Synthesis. NY: Wiley, 1994. 137.
[154] Dalko P I, Moisan L. Angew. Chem. Int. Ed., 2001, 40: 3726.
[155] List B. Synlett., 2001, 1675.
[156] Jarvo E R, Miller S J. Tetrahedron, 2002, 58: 2481.
[157] 张治国(Zhang Z G), 王歆燕(Wang X Y), 孙川(Sun C), 石鸿昌(Shi H C). 有机化学(Chin. J. Org. Chem.), 2004, 24(1):7.
[158] 林晓倩(Lin X Q), 卢楠(Lu N), 山东化工(Shandong Chemical Industry), 2011, 40(1):34.
[159] Yang D. Acc. Chem. Rev., 2004, 37: 497.
[160] Ma S M. Topics in Organometallic Chemistry. Berlin Heidelberg: Springer-Verlag, 2011. 123.
[161 Wong O A, Shi Y. Chem. Rev., 2008, 108: 3958.
[162] Curci R, Fiorentino M, Serio M R. J. Chem. Soc., Chem. Commun., 1984 :155.
[163] Curci R, Dinoi A, Rubino M F. Pure Appl. Chem., 1995, 67: 811.
[164] Yang D, Yip Y C, Wang M K, Zheng J H. J. Am. Chem. Soc., 1996, 118: 491.
[165] TuY, Wang Z, Shi Y. J. Am. Chem. Soc., 1996, 118: 9806.
[166] Wang Z X, Tu Y, Frohn M, Zhang J R , Shi Y. J. Org. Chem., 1997, 62: 2328.
[167] Frohn M, Shi Y. Synthesis, 2000, 1997.
[168] Frohn M, Shi Y. Org. Synth., 2003, 80: 1.
[169] Wong O A, Wang B, Zhao M X, Shi Y. J. Org. Chem., 2009, 74: 6335.
[170] Denmark S E, Matsuhashi H. J. Org. Chem., 2002, 67: 3479.
[171 Vega-Pérez J M, Holm M V, Martínez M L, Blanco E, Iglesias-Guerra F. Eur. J. Org. Chem., 2009, 2009: 6009.
[172] Bohe L, Hanquet G, Lusinchi M, Lusinchi X. Tetrahedron Lett., 1993, 34:7271.
[173] Bohe L, Lusinchi M, Lusinchi X. Tetrahedron, 1999, 55: 141.
[174] Aggarwal V K, Wang M F J. Chem. Soc., Chem. Commun., 1996, 191.
[175] Page P C B, Rassias G A, Barros D, Ardakani A, Buckley B, Bethell D, SmithT A D, Slawin A M Z. J. Org. Chem., 2001, 66: 6926.
[176] Page P C B, Buckley B R, Blacker A J. Org. Lett., 2004, 6: 1543.
[177] Page P C B, Buckley B R, Heaney H, Blacker A J, Org. Lett., 2005, 7: 375.
[178] Vachon J, Perollier C, Monchaud D, Marsol C, Ditrich K, Lacour J. J. Org. Chem.,2005, 70, 5903.
[179] Page P C B, Buckley B R, Farah M M, Blacker A J, Eur. J. Org. Chem., 2009, 2009 : 3413.
[180] Page P C B, Bartlett C J, Chan Y, Day D, Parker P, Buckley B R, Rassias G A, Slawin A M Z, Allin S M, Lacour J, Pinto A. J. Org. Chem., 2012, 77: 6128.
[181] Farahb M M, Bulman Page P C, Buckley B R, Blacker A J, Elsegood M R J. Tetrahedron, 2013, 69: 758.

 

[1] 赵自通, 张真真, 梁志宏. 催化水解反应的肽基模拟酶的活性来源、催化机理及应用[J]. 化学进展, 2022, 34(11): 2386-2404.
[2] 葛明, 胡征, 贺全宝. 基于尖晶石型铁氧体的高级氧化技术在有机废水处理中的应用[J]. 化学进展, 2021, 33(9): 1648-1664.
[3] 苏原, 吉可明, 荀家瑶, 赵亮, 张侃, 刘平. 甲醛氧化催化剂及反应机理[J]. 化学进展, 2021, 33(9): 1560-1570.
[4] 郭芬岈, 李宏伟, 周孟哲, 徐正其, 郑岳青, 黎挺挺. 基于非贵金属催化剂常温常压电化学合成氨[J]. 化学进展, 2020, 32(1): 33-45.
[5] 吴正颖, 刘谢, 刘劲松, 刘守清, 查振龙, 陈志刚. 二硫化钼基复合材料的合成及光催化降解与产氢特性[J]. 化学进展, 2019, 31(8): 1086-1102.
[6] 赵文军, 秦疆洲, 尹志凡, 胡霞, 刘宝军. 新型2D MXenes 纳米材料在光催化领域的应用[J]. 化学进展, 2019, 31(12): 1729-1736.
[7] 吕记巍, 敖先权*, 陈前林, 谢燕, 曹阳, 张纪芳. 煤气化可弃型催化剂[J]. 化学进展, 2018, 30(9): 1455-1462.
[8] 杜凡凡, 郑映, 单国荣, 包永忠, 介素云*, 潘鹏举*. 基于氢键作用的内酯开环聚合非金属有机催化剂[J]. 化学进展, 2018, 30(6): 710-718.
[9] 殷巧巧, 乔儒, 童国秀. 离子掺杂氧化锌光催化纳米功能材料的制备及其应用[J]. 化学进展, 2014, 26(10): 1619-1632.
[10] 解英娟, 吴志娇, 张晓, 马佩军, 朴玲钰. 混晶TiO2光催化剂的制备及机理研究[J]. 化学进展, 2014, 26(07): 1120-1131.
[11] 张骞, 周莹, 张钊, 何云, 陈永东, 林元华. 表面等离子体光催化材料[J]. 化学进展, 2013, 25(12): 2020-2027.
[12] 徐莹莹, 李钊, Maxim Borzov, 聂万丽*. 空间受阻型Lewis酸碱对在小分子活化中的应用[J]. 化学进展, 2012, 24(08): 1526-1532.
[13] 殷晓春, 王荣民, 何玉凤, 朱永峰, 裴菲. 人工氧载体研究进展[J]. 化学进展, 2011, 23(5): 963-973.
[14] 王荣民 朱永峰 何玉凤 李岩 毛崇武 何乃普. 金属卟啉蛋白质结合体的结构与功能*[J]. 化学进展, 2010, 22(10): 1952-1963.
[15] 杨旸 郑雯 程党国 陈丰秋 詹晓力. 原位FT-IR技术在研究甲烷氧化反应中的应用*[J]. 化学进展, 2009, 21(10): 2205-2211.