English
新闻公告
More
化学进展 2015, Vol. 27 Issue (1): 70-78 DOI: 10.7536/PC140818 前一篇   后一篇

• 综述与评论 •

非均相环糊精在水相有机合成反应中的应用

沈海民*1, 武宏科1, 史鸿鑫1, 纪红兵2, 余武斌*1   

  1. 1. 浙江工业大学化学工程学院 杭州 310014;
    2. 中山大学化学与化学工程学院 广州 510275
  • 收稿日期:2014-08-01 修回日期:2014-10-01 出版日期:2015-01-15 发布日期:2014-11-24
  • 通讯作者: 沈海民, 余武斌 E-mail:haimshen@zjut.edu.cn;yuwb@zjut.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 21306176),浙江工业大学科研启动基金项目(No. G2817101103)和浙江省自然科学基金项目(No. LQ14B020002)资助

Application of the Heterogeneous Cyclodextrins in Aqueous Phase Organic Synthesis

Shen Haimin*1, Wu Hongke1, Shi Hongxin1, Ji Hongbing2, Yu Wubin*1   

  1. 1. College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China;
    2. School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
  • Received:2014-08-01 Revised:2014-10-01 Online:2015-01-15 Published:2014-11-24
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 21306176), the Scientific Research Launching Foundation of Zhejiang University of Technology (No. G2817101103), and the Zhejiang Provincial Natural Science Foundation (No. LQ14B020002).

本文详细综述了非均相环糊精在水相有机合成反应中的应用,包括非均相环糊精在水相氧化反应、还原反应、取代反应、加成反应和光催化反应中的应用。同时,全面阐述了在催化或促进水相有机合成反应中环糊精非均相化的策略,包括形成水不溶性交联聚合物和将环糊精固载在水不溶性载体上两种途径。目前非均相环糊精在水相有机合成反应中的应用还基本局限在简单的相转移催化剂领域,相关报道也较少,处于起步阶段;基于非均相环糊精构筑超分子仿酶是今后该领域的发展趋势和必然归属,应在发挥非均相优势的同时,保留环糊精单元在超分子仿酶构筑中的优良功用。

The applications of the heterogeneous cyclodextrins in aqueous phase organic synthesis are reviewed in detail, including the applications in oxidation, reduction, substitution reaction, addition reaction and photocatalytic reaction. At the same time, the strategies to construct heterogeneous cyclodextrins in the catalysis or promotion of the aqueous phase organic synthesis are stated comprehensively, two strategies being the formation of water-insoluble cross-linking polymer and the grafting cyclodextrins to water-insoluble supporter. It is pointed out that the application of the heterogeneous cyclodextrins in aqueous phase organic synthesis is limited in the simple phase-transfer catalysis and there is fewer relevant literature, just in its infancy stage. The construction of artificial enzyme based on the heterogeneous cyclodextrins would be the development trend and inevitable affiliation in the construction of artificial enzyme based on cyclodextrins, possessing the advantage of the heterogeneous catalyst, meanwhile retaining the excellent function of the cyclodextrin unit in the construction of supramolecular artificial enzyme.

Contents
1 Introduction
2 Oxidation Reaction
3 Reduction Reaction
4 Substitution Reaction
5 Addition Reaction
6 Photocatalytic Reaction
7 Conclusion and outlook

中图分类号: 

()

[1] Takahashi K. Chem. Rev., 1998, 98: 2013.
[2] 纪红兵(Ji H B), 黄丽泉(Huang L Q), 石东坡(Shi D P), 周贤太(Zhou X T). 有机化学(Chinese Journal of Organic Chemistry), 2008, 28(12): 2072.
[3] Zhao W, Zhong Q. J. Inclusion Phenom. Macrocyclic Chem., 2012, 72: 1.
[4] Breslow R, Dong S D. Chem. Rev., 1998, 98: 1997.
[5] Marinescu L, Bols M. Curr. Org. Chem., 2010, 14: 1380.
[6] Woggon W D. Curr. Org. Chem., 2010, 14: 1362.
[7] 沈海民(Shen H M), 纪红兵(Ji H B). 有机化学(Chinese Journal of Organic Chemistry), 2011, 31(6): 791.
[8] 沈海民(Shen H M), 纪红兵(Ji H B). 有机化学(Chinese Journal of Organic Chemistry), 2012, 32(6): 975.
[9] 王海波(Wang H B), 赵猛(Zhao M), 计亮年(Ji L N), 毛宗万(Mao Z W). 化学进展(Progress in Chemistry), 2013, 25(4): 577.
[10] French R R, Holzer P, Leuenberger M G, Woggon W D. Angew. Chem. Int. Ed., 2000, 39: 1267.
[11] French R R, Holzer P, Leuenberger M, Nold M C, Woggon W D. J. Inorg. Biochem., 2002, 88: 295.
[12] Breslow R, Zhang X, Huang Y. J. Am. Chem. Soc., 1997, 119: 4535.
[13] Yang J, Breslow R. Angew. Chem. Int. Ed., 2000, 39: 2692.
[14] Yang J, Gabriele B, Belvedere S, Huang Y, Breslow R. J. Org. Chem., 2002, 67: 5057.
[15] Dong Z Y, Liu J Q, Mao S Z, Huang X, Yang B, Ren X J, Luo G M, Shen J C. J. Am. Chem. Soc., 2004, 126: 16395.
[16] Dong Z Y, Liang K, Wang C Y, Huang X, Mao S, Li X Z, Xu J Q, Liu J Q, Luo G M, Shen J C. J. Mol. Catal. A-Chem., 2007, 277: 193.
[17] Jiao A Q, Yang N, Wang J P, Toure A, Xu X M, Jin Z Y. J. Inclusion Phenom. Macrocyclic Chem., 2012, 74: 335.
[18] Yin Y Z, Jiao S F, Lang C, Liu J Q. Rsc Adv., 2014, 4: 25040.
[19] Yin Y Z, Jiao S F, Lang C, Liu J Q. Soft Matter, 2014, 10: 3374.
[20] Wang Y Q, Han B H. Chinese J. Chem., 2013, 31: 569.
[21] 沈海民(Shen H M), 武宏科(Wu H K), 纪红兵(Ji H B), 史鸿鑫(Shi H X). 有机化学(Chinese Journal of Organic Chemistry), 2014, 34(4): 630.
[22] 沈海民(Shen H M), 纪红兵(Ji H B), 武宏科(Wu H K), 史鸿鑫(Shi H X). 有机化学(Chinese Journal of Organic Chemistry), 2014, 34(8): 1549.
[23] 沈海民(Shen H M), 纪红兵(Ji H B). 有机化学(Chinese Journal of Organic Chemistry), 2012, 32(9): 1684.
[24] Shen H M, Ji H B. Tetrahedron Lett., 2012, 53: 3541.
[25] Shen H M, Ji H B. Carbohyd. Res., 2012, 354: 49.
[26] Shen H M, Ji H B. Tetrahedron, 2013, 69: 8360.
[27] Marinescu L G, Doyagueez E G, Petrillo M, Fernandez-Mayoralas A, Bols M. Eur. J. Org. Chem., 2010: 157.
[28] Bjerre J, Bols M. J. Inclusion Phenom. Macrocyclic Chem., 2011, 69: 417.
[29] Fenger T H, Bols M. J. Inclusion Phenom. Macrocyclic Chem., 2011, 69: 397.
[30] Zhou Y, Lindback E, Pedersen C M, Bols M. Tetrahedron Lett., 2014, 55: 2304.
[31] Yang Z J, Jiang H G, Zhou X T, Fang Y X, Ji H B. Supramol. Chem., 2012, 24: 379.
[32] Yang Z J, Zeng H, Zhou X T, Ji H B. Tetrahedron, 2012, 68: 5912.
[33] Jiang H G, Yang Z J, Zhou X T, Fang Y X, Ji H B. Chinese J. Chem. Eng., 2012, 20: 784.
[34] Yang Z J, Ji H B. Acs Sustainable Chem. Eng., 2013, 1: 1172.
[35] Yang Z J, Zeng H, Zhou X T, Ji H B. Supramol. Chem., 2013, 25: 233.
[36] Kang Y, Zhou L L, Li X, Yuan J Y. J. Mater. Chem., 2011, 21: 3704.
[37] Zhu J, Wang P C, Lu M. J. Brazil. Chem. Soc., 2013, 24: 171.
[38] Chalasani R, Vasudevan S. Acs Nano, 2013, 7: 4093.
[39] Zhang X, Wu F, Deng N S. Catal. Commun., 2010, 11: 422.
[40] Kiasat A R, Sayyahi S. Catal. Commun., 2010, 11: 484.
[41] Mori K, Yoshioka N, Kondo Y, Takeuchi T, Yamashita H. Green Chem., 2009, 11: 1337.
[42] Schlatter A, Kundu M K, Woggon W D. Angew. Chem. Int. Ed., 2004, 43: 6731.
[43] Schlatter A, Woggon W D. Adv. Synth. Catal., 2008, 350: 995.
[44] Jiao A Q, Yang N, Wang J P, Xu X M, Jin Z Y. J. Inclusion Phenom. Macrocyclic Chem., 2013, 75: 155.
[45] Kiasat A R, Nazari S. Catal. Commun., 2012, 18:102.
[46] Kiasat A R, Nazari S. Catal. Sci. Technol., 2012, 2: 1056.
[47] Kiasat A R, Nazari S. J. Mol. Catal. A-Chem., 2012, 365: 80.
[48] Kiasat A R, Nazari S. J. Inclusion Phenom. Macrocyclic Chem., 2013, 76: 363.
[49] Kiasat A R, Zarinderakht N, Sayyahi S. Chinese J.Chem., 2012, 30: 699.
[50] Kumar V P, Narender M, Sridhar R, Nageswar Y V A, Rao K R. Chem. Commun., 2007, 37: 4331.
[51] Ji H B, Huang L Q, Shen H M, Zhou X T. Chem. Eng. J., 2011, 167: 349.
[52] Ramesh K, Murthy S N, Karnakar K, Nageswar Y V D. Tetrahedron Lett., 2011, 52: 4734.
[53] Nageswar Y V D, Ramesh K, Murthy S N. Tetrahedron Lett., 2011, 52: 2362.
[54] Kiasat A R, Nazari S, Davarpanah J. J. Serb. Chem. Soc., 2014, 79: 401.
[55] Tahir M N, Qamar R U, Adnan A, Cho E, Jung S. Tetrahedron Lett., 2013, 54: 3268.
[56] Doyaguez E G, Rodriguez-Hernandez J, Corrales G, Fernandez-Mayoralas A, Gallardo A. Macromolecules, 2012, 45: 7676.
[57] Khalafi-Nezhad A, Panahi, F. ACS Sustainable Chem. Eng., 2014, 2: 1177.
[58] Kaboudin B, Mostafalu R, Yokomatsu T. Green Chem., 2013, 15: 2266.
[59] Inoue Y, Wada T, Sugahara N, Yamamoto K, Kimura K, Tong L H, Gao X M, Hou Z J, Liu Y. J. Org. Chem., 2000, 65: 8041.
[60] Gao Y Y, Inoue M, Wada T, Inoue Y. J. Inclusion Phenom. Macrocyclic Chem., 2004, 50: 111.
[61] Fukuhara G, Mori T, Wada T, Inoue Y. Chem. Commun., 2005, 4199.
[62] Fukuhara G, Mori T, Wada T, Inoue Y. J. Org. Chem., 2006, 71: 8233.
[63] Lu R H, Yang C, Cao Y J, Wang Z Z, Wada T, Jiao W, Mori T, Inoue Y. Chem. Commun., 2008, 374.
[64] Lu R H, Yang C, Cao Y J, Tong L H, Jiao W, Wada T, Wang Z Z, Mori T, Inoue Y. J. Org. Chem., 2008, 73: 7695.
[65] Yang C, Mori T, Wada T, Inoue Y. New J. Chem., 2007, 31: 697.
[66] Liang W T, Yang C, Nishijima M, Fukuhara G, Mori T, Mele A, Castiglione F, Caldera F, Trotta F, Inoue Y. Beilstein J. Org. Chem., 2012, 8:1305.
[67] Luo L, Liao G H, Wu X L, Lei L, Tung C H, Wu L Z. J. Org. Chem., 2009, 74: 3506.
[68] Ikeda H, Nihei T, Ueno A. J. Org. Chem., 2005, 70: 1237.
[69] Yang C, Fukuhara G, Nakamura A, Origane Y, Fujita K, Yuan D Q, Mori T, Wada T, Inoue Y. J. Photoch. Photobio. A, 2005, 173: 375.
[70] Yang C, Nakamura A, Fukuhara G, Origane Y, Mori T, Wada T, Inoue Y. J. Org. Chem., 2006, 71: 3126.
[71] Nakamura A, Inoue Y. J. Am. Chem. Soc., 2005, 127: 5338.
[72] Ke C F, Yang C, Mori T, Wada T, Liu Y, Inoue Y. Angew. Chem. Int. Edit., 2009, 48: 6675.
[73] Yao J B, Yan Z Q, Ji J C, Wu W H, Yang C, Nishijima M, Fukuhara G, Mori T, Inoue Y. J. Am. Chem. Soc., 2014, 136: 6916.
[74] Qiu H B, Yang C, Inoue Y, Che S N. Org. Lett., 2009, 11: 1793.
[75] Breslow R. Accounts Chem. Res., 1995, 28: 146.

[1] 宋欢, 邹琦, 陆克定. HO2非均相摄取系数的测量与参数化[J]. 化学进展, 2021, 33(7): 1175-1187.
[2] 王娜娜, 王官武. 机械研磨条件下凝聚态有机合成探究[J]. 化学进展, 2020, 32(8): 1076-1085.
[3] 李霞, 马红艳, 聂晓娟, 刘旭, 卞成明, 谢龙. 星形环糊精聚合物的制备及其应用[J]. 化学进展, 2020, 32(7): 935-942.
[4] 侯晨, 陈文强, 付琳慧, 张素风, 梁辰. 共价有机框架材料在固定化酶及模拟酶领域的应用[J]. 化学进展, 2020, 32(7): 895-905.
[5] 缪谦, 杨代月. 从含有八元环的稠环芳烃到具有负曲率的碳纳米结构:进展与展望[J]. 化学进展, 2020, 32(11): 1835-1845.
[6] 王海潮, 唐明金, 谭照峰, 彭超, 陆克定. 硝酰氯的大气化学[J]. 化学进展, 2020, 32(10): 1535-1546.
[7] 付如刚, 李政, 高磊. 直接以碳化钙为炔源合成有机化合物[J]. 化学进展, 2019, 31(9): 1303-1313.
[8] 马明放, 栾天翔, 邢鹏遥, 李兆楼, 初晓晓, 郝爱友. 基于β-环糊精的有机小分子凝胶[J]. 化学进展, 2019, 31(2/3): 225-235.
[9] 赵倩, 李盛华, 刘育*. 环糊精超分子凝胶的构筑及其功能[J]. 化学进展, 2018, 30(5): 673-683.
[10] 刘莹, 何宏平, 吴德礼, 张亚雷. 非均相催化臭氧氧化反应机制[J]. 化学进展, 2016, 28(7): 1112-1120.
[11] 王海潮, 陆克定. 五氧化二氮(N2O5)非均相摄取系数的定量和参数化[J]. 化学进展, 2016, 28(6): 917-933.
[12] 郭瑞梅, 白金泉, 张恒, 谢亚勃, 李建荣. 金属-有机骨架材料在催化氧化反应中的应用[J]. 化学进展, 2016, 28(2/3): 232-243.
[13] 张凌峰, 胡忠攀, 高泽敏, 刘亚录, 袁忠勇. 有序介孔碳基金属复合材料的制备及催化应用[J]. 化学进展, 2015, 27(8): 1042-1056.
[14] 邹怀波, 汪华华, 梅光泉, 刘海洋, 张启光. 铁咔咯配合物在有机合成中的催化应用[J]. 化学进展, 2015, 27(6): 666-674.
[15] 徐艺凇, 张凤香, 厉嘉云, 白赢, 肖文军, 彭家建. 聚乙二醇功能化离子液体的制备及其在有机反应中的应用[J]. 化学进展, 2015, 27(10): 1400-1412.
阅读次数
全文


摘要