English
新闻公告
More
化学进展 2014, Vol. 26 Issue (10): 1673-1689 DOI: 10.7536/PC140519 前一篇   后一篇

• 综述与评论 •

苯并[1,2-b:4,5-b’]二噻吩的结构修饰及在有机光伏材料中的应用

赖衍帮, 丁益民*, 王洪宇*   

  1. 上海大学化学系 上海 200444
  • 收稿日期:2014-05-01 修回日期:2014-06-01 出版日期:2014-10-15 发布日期:2014-08-12
  • 通讯作者: 丁益民, 王洪宇 E-mail:ymding@shu.edu.cn; wanghy@shu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 61204020)资助

Structural Modification of Benzo [1,2-b:4,5-b’] dithiophene and Application in Organic Photovoltaic Materials

Lai Yanbang, Ding Yimin*, Wang Hongyu*   

  1. Department of Chemistry, Shanghai University, Shanghai 200444, China
  • Received:2014-05-01 Revised:2014-06-01 Online:2014-10-15 Published:2014-08-12
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 61204020 )

近年来,苯并[1,2-b:4,5-b’]二噻吩吩(benzo[1,2-b:4,5-b’]dithiophene,BDT)作为构筑给体-受体结构有机半导体材料的优良电子给体,受到越来越多的重视,已广泛应用于场效应晶体管和有机光伏电池等领域。BDT类有机共轭材料具有优良的能级结构,同时又具有较高的载流子迁移率,目前报道的基于BDT的有机共轭聚合物的最高光电转换效率达到9.2% (单节光伏器件的最高效率),显示了其在有机太阳能电池领域巨大的应用前景。本文从BDT的结构修饰出发,系统地综述了基于BDT的有机光伏材料的最新研究进展,重点讨论BDT类光伏材料能级结构和聚集态形貌对光电性能的影响。

In recent years, benzo[1,2-b:4,5-b']dithiophene (BDT) has been receiving considerable attentions as the excellent electron-donating unit for constructing donor-acceptor structured organic semiconductors.It has been widely used in organic thin film transistors and organic photovoltaics. BDT-based conjugated polymeric materials possess favorable energy levels and band gaps, along with high carrier mobilities. Power conversion efficiencies of up to 9.2%(the best value reported for single junction organic solar cells) have been achieved for OPVs using BDT-based polymers, demonstrating their potential applications in the organic solar cells. In this paper, beginning with the structural modification of BDT, the latest research advances of organic photovoltaic materials based on BDT are reviewed, and the influence of energy levels and morphology on optoelectronic properties is intensively discussed.

Contents
1 Introduction
2 BDT-based copolymers
2.1 4, 8-Position connect with alkyl and alkoxy group
2.2 4, 8-Position connect with alkyne and aromatic group
2.3 Conjugate plane expansion
3 BDT-based small molecules
4 Conclusions and outlook

中图分类号: 

()

[1] Pan H, Li Y, Wu Y, Liu P, Ong B S, Zhu S, Xu G. J. Am.Chem. Soc., 2007, 129: 4112.
[2] Hou J H, Park M, Zhang S Q, Yao Y, Chen L, Li J, Yang Y. Macromolecules, 2008, 41: 6012.
[3] Huo L J, Hou J H. Polym. Chem., 2011, 2: 2453.
[4] He Z C, Zhong C M, Su S j, Xu M, Wu H B, Cao Y. Nat. Photonics, 2012, 6: 591.
[5] Osaka I, Shinamura S J, Abe T, Takimiya K. J. Mater. Chem. C, 2013, 1: 1297.
[6] Ye L, Zhang S Q, Huo L J, Zhang M J, Hou J H. Acc. Chem. Res., 2014, 47: 1595.
[7] Zou Y P, Najari A, Berrouard P, Beaupré S, Aïch B R, Tao Y, Leclerc M. J. Am. Chem. Soc., 2010, 132: 5330.
[8] Najari A, Beaupré S, Berrouard P, Zou Y P, Pouliot J, Lepage-Pérusse C, Leclerc M. Adv. Funct. Mater., 2011, 21: 718.
[9] Réda Aïch B, Lu J P, Beaupré S, Leclerc M, Tao Y. Org. Electron., 2012, 13: 1736.
[10] Kim B G, Ma X, Chen C, Ie Y, Coir E W, Hashemi H, Aso Y, Kieffer J, Kim J S. Adv. Funct. Mater., 2013, 23: 439.
[11] Cabanetos C, El Labban A, Bartelt J A, Douglas J D, Mateker W R, Frechet J M J, McGehee M D, Beaujuge P M. J. Am.Chem. Soc., 2013, 135: 4656.
[12] Kim S O, Kim Y S, Yun H J, Kang I, Yoon Y W, Shin N, Son H J, Kim H G, Ko M J, Kim B S, Kim K K, Kim Y H, Kwon Y S. Macromolecules, 2013, 46: 3861.
[13] Douglas J D, Griffini G, Holcombe T W, Young E P, Lee O P, Chen M S, Fréchet J M J. Macromolecules, 2012, 45: 4069.
[14] Braunecker W A, Owczarczyk Z R, Garcia A, Kopidakis N, Larsen R E, Hammond S R,Ginley D S, Olson D C. Chem. Mater., 2012, 24: 1346.
[15] Wu Y, Jing Y, Guo X, Zhang S Q, Zhang M J, Huo L J, Hou J H. Polym. Chem., 2013, 4: 536.
[16] Zhou N J, Guo X G, Ortiz R P, Li S Q, Zhang S M, Chang R P H, Facchetti A, Marks T J. Adv. Mater., 2012, 24: 2242.
[17] Li J, Zhao Y, Tan H S, Guo Y, Di C A, Yu G, Liu Y, Lin M, Lim S H, Zhou Y, Su H, Ong B S. Sci. Rep., 2012, 2: 754.
[18] Kanimozhi C, Yaacobi-Gross N, Chou K W, Amassian A, Anthopoulos T D, Patil S. J. Am. Chem. Soc., 2012, 134: 16532.
[19] Li Z, Zhang Y G, Tsang S W, Du X M, Zhou J Y, Tao Y, Ding J F. J. Phys. Chem. C, 2011, 115: 18002.
[20] Tan H, Deng X P, Yu J T, Zhao B F, Wang Y F, Liu Y, Zhu W G, Wu H B, Cao Y. Macromolecules, 2013, 46: 113.
[21] Carsten B, Szarko J M, Lu L Y, Son H J, He F, Botros Y Y, Chen L X,Yu L P. Macromolecules, 2012, 45: 6390.
[22] Li Y W, Yu W, Chen J, Liu X, Wang Z, Yang X M, Tu Y F, Zhu X L. Macromolecules, 2011, 44: 6370.
[23] Nie W, MacNeill C M, Li Y, Noftle R E, Carroll D E, Coffin R C. Macromol. Rapid Commun., 2011, 32: 1163.
[24] Wang X C, Sun Y P, Chen S, Guo X, Zhang M J, Li X Y, Li Y F, Wang H Q. Macromolecules, 2012, 45: 1208.
[25] Liu B, Chen X W, Zou Y P, Xiao X J, He Y H, Li L D, Li Y F. Macromolecules, 2012, 45: 6898.
[26] Wang X C, Jiang P, Chen Y, Luo H, Zhang Z G, Wang H Q, Li X Y, Yu G, Li Y F. Macromolecules, 2013, 46: 4805.
[27] Gu Z J, Tang P, Zhao B, Luo H, Guo X, Chen H J, Yu G, Liu X P, Shen P, Tan S T. Macromolecules, 2012, 45: 2359.
[28] Huang Y H, Zhang M, Chen H J, Wu F, Cao Z C, Zhang L J, Tan S T. J. Mater. Chem. A, 2014, 2: 5218.
[29] Cho H H, Kang T E, Kim K H, Kang H B, Kim H J, Kim B J. Macromolecules, 2012, 45: 6415.
[30] Zhou E, Cong J, Hashimoto K, Tajima K. Macromolecules, 2013, 46: 763.
[31] Mei C U, Liang L, Zhao F J, Wang J T, Yu L F, Li Y X, Li W S. Macromolecules, 2013, 46: 7920.
[32] Price S C, Stuart A C, Yang L Q, Zhou H X, You W. J. Am. Chem. Soc., 2011, 133: 4625.
[33] Stuart A C, Tumbleston J R, Zhou H X, Li W T, Liu S B, Ade H, You W. J. Am. Chem. Soc., 2013, 135 : 1806.
[34] Kim J H, Shin S A, Park J B, Song C E, Shin W S, Yang H C, Li Y F, Hwang D H. Macromolecules, 2014, 47: 1613.
[35] Chen H C, Chen Y H, Liu C C, Chien Y C, Chou S W, Chou P T. Chem. Mater., 2012, 24: 4766.
[36] Gedefaw D, Tessarolo M, Zhuang W L, Kroon R, Wang E, Bolognesi M, Seri M, Muccini M, Andersson M R. Polym. Chem., 2014, 5: 2083.
[37] Chen H Y, Hou J H, Zhang S Q, Liang Y Y, Yang G W, Yang Y, Yu L P,Wu Y, Li G. Nat. Photonics, 2009, 3: 649.
[38] Son H J, Wang W, Xu T, Liang Y Y, Wu Y, Li G, Yu L P. J. Am. Chem. Soc., 2011, 133: 1885.
[39] Carsten B, Szarko J M, Son H J, Wang W, Lu L Y, He F, Rolczynski B S, Lou S J, Chen L X, Yu L P. J. Am. Chem. Soc., 2011, 133: 20468.
[40] Saadeh H A, Lu L Y, He F, Bullock J E, Wang W, Carsten B, Yu L P. ACS Macro Lett., 2012, 1: 361.
[41] Murray I P, Lou S J, Cote L J, Loser S, Kadleck C J, Xu T, Szarko J M, Rolczynski B S, Johns J E, Huang J X, Yu L P, Chen L X, Marks T J, Hersam M C. J. Phys. Chem. Lett., 2011, 2: 3006.
[42] Chen W, Xu T, He F, Wang W, Wang C, Strzalka J, Liu Y, Wen J G, Miller D J, Chen J H, Hong K L, Yu L P, Darling S B. Nano Lett., 2011, 11: 3707.
[43] Lee B R, Jung E D, Nam Y S, Jung M, Park J S, Lee S J, Choi H, Ko S J, Shin N R, Kim Y K, Kim S Q, Kim J Y, Shin H J, Cho S, Song M H. Adv. Mater., 2014, 26: 494.
[44] Zhang M J, Guo X, Li Y F. Macromolecules, 2011, 44: 8798.
[45] Chen H Y, Wu J L, Chen C T, Chen C T. Chem.Commun., 2012, 48: 1012.
[46] Cho M J, Seo J W, Kim K H, Choi D H, Prasad P N. Macromol.Rapid Commun., 2012, 33: 146.
[47] Lee D Y, Hubijar E, Jones G, Kalaw D, Ferraris J P. Chem. Mater., 2012, 24: 2534.
[48] Li K, Li Z J, Feng K, Xu X P, Wang L Y, Peng Q. J. Am. Chem. Soc., 2013, 135: 13549.
[49] Uy R L, Yan L, Li W T, You W. Macromolecules, 2014, 47: 2289.
[50] Jiang J M, Lin H K, Lin Y C, Chen H C, Lan S C, Chang C K, Wei K H. Macromolecules, 2014, 47: 70.
[51] Warnan J, Labban A E, Cabanetos C, Hoke E T, Shukla P K, Risko C, Brédas J L, McGehee M D, Beaujuge P M. Chem. Mater., 2014, 26: 2299.
[52] Warnan J, Cabanetos C, Bude R, Labban A E, Li L, Beaujuged P M. Chem.Mater., 2014, 26: 2829.
[53] Chakravarthi N, Kranthiraja K, Song M K,Gunasekar K, Jeong P, Moon S J, Shin W S,Kang I N, Lee J K, Jin S H. Solar Energy Materials & Solar Cells, 2014, 122: 136.
[54] Li W W, Roelofs W S C, Wienk M M, Janssen R J. J. Am. Chem. Soc., 2012, 134: 13787.
[55] Wang Y, Yang F, Liu Y, Peng R X, Chen S J, Ge Z Y. Macromolecules, 2013, 46: 1368.
[56] Wang Y, Liu Y, Chen S J, Peng R X, Ge Z Y. Chem. Mater., 2013, 25: 3196.
[57] Dou L D, Gao J, Richard E, You J B, Chen C C, Cha K C, He Y J, Li G, Yang Y. J. Am. Chem. Soc., 2012, 134: 10071.
[58] Guo X, Zhang M J, Huo L H, Xu F, Wu Y, Hou J H. J. Mater. Chem., 2012, 22: 21024.
[59] Zuo G Z, Li Z J, Zhang M J, Guo X, Wu Y, Zhang S Q, Peng B, Wei W, Hou J H. Polym. Chem., 2014, 5: 1976.
[60] Peng Q, Liu X J, Su D, Fu G W, Xu J, Dai L M. Adv. Mater., 2011, 23: 4554.
[61] Shen P, Bin H J, Zhang Y, Li Y F. Polym. Chem., 2014, 5: 567.
[62] Wang M, Hu X W, Liu P, Li W, Gong X, Huang F, Cao Y. J. Am. Chem. Soc., 2011, 133: 9638.
[63] Yang T B, Wang M, Duan C H, Hu X W, Huang L, Peng J B, Huang F, Gong X. Energy Environ. Sci., 2012, 5: 8208.
[64] Min J, Zhang Z G, Zhang S, Li Y F. Chem. Mater., 2012, 24: 3247.
[65] Qin T S, Zajaczkowski W, Pisula W, Baumgarten M, Chen M, Gao M, Wilson G, Easton C D, Müllen K, Watkins S E. J. Am.Chem.Soc., 2014, 136: 6049.
[66] Wang L X, Cai D D, Zheng Q D, Tang C Q, Chen S C, Yin Z G. ACS Macro Lett., 2013, 2: 605.
[67] Duan R M, Ye L, Guo X, Huang Y, Wang P, Zhang S Q, Zhang J P, Huo L J, Hou J H. Macromolecules, 2012, 45: 3032.
[68] Song K W, Lee T H, Ko E J, Back K H, Moon D K. Polym. Chem., 2014, 52: 1028.
[69] Wang K, Zhang Z G, Fu Q, Li Y F. Macromol. Chem. Phys., 2014, 215: 597.
[70] Huo L J, Zhang S Q, Guo X, Xu F, Li Y F, Hou J H. Angew. Chem., 2011, 123: 9871.
[71] Guo X, Zhang M J, Ma W, Ye L, Zhang S Q, Liu S J, Ade H, Huang F, Hou J H. Adv. Mater., 2014, 26(24): 4043.
[72] Huo L J, Ye L, Wu Y, Li Z J, Guo X, Zhang M J, Zhang S Q, Hou J H. Macromolecules, 2012, 45: 6923.
[73] Cui C H, Wong W Y, Li Y F. Energy Environ. Sci., 2014, 7: 2276.
[74] Wu Y, Li Z L, Ma W, Huang Y, Huo L J, Guo X, Zhang M J, Ade H, Hou J H. Adv. Mater., 2013, 25: 3449.
[75] Huang Y, Guo X, Liu F, Huo L J, Chen Y, Russell T P, Han C C, Li Y F, Hou J H. Adv. Mater., 2012, 24 : 3383.
[76] Zhang M J, Guo X, Zhang S Q, Hou J H. Adv. Mater., 2014, 26: 1118.
[77] Chen Y, Zhang S Q, Wu Y, Hou J H. Adv. Mater., 2014, 26: 2744.
[78] Qian D P, Ye L, Zhang M J, Liang Y R, Li L J, Huang Y, Guo X, Zhang S Q, Tan Z A, Hou J H. Macromolecules, 2012, 45: 9611.
[79] Liu P, Zhang K, Liu F, Jin Y C, Liu S J, Russell T P, Yip H L, Huang F, Cao Y. Chem. Mater., 2014, 26: 3009.
[80] Kim J H, Kim H U, Kang I N, Lee S K, Moon S J, Shin W S, Hwang D H. Macromolecules, 2012, 45: 8628.
[81] Kang T E, Cho H H, Kim H J, Lee W, Kang H, Kimdx B J. Macromolecules, 2013, 46: 6806.
[82] Kularatne R S, Sista P, Nguyen H Q, Bhatt M P, Biewer M C, Stefan M C. Macromolecules, 2012, 45: 7855.
[83] Kuo C Y, Nie W, Tsai T, Yen H J, Mohite A D,Gupta G, Dattelbaum A M, William D J, Cha K C,Yang Y, Wang L, Wang H L. Macromolecules, 2014, 47: 1008.
[84] Liu Q, Bao X, Wen S G, Du Z K, Han L L, Zhu D Q, Chen Y H, Sun M L, Yang R Q. Polym. Chem., 2014, 5: 2076.
[85] Han L L, Bao X C, Hu T, Du Z K, Chen W C, Zhu D Q, Sun M L, Yang R Q. Macromol. Rapid Commun., 2014, 35: 1153.
[86] Chung H S, Lee W H, Song C E, Shin Y R, Kim J H, Lee S K, Shin W S, Moon S J, Kang I N. Macromolecules, 2014, 47: 97.
[87] Kim J H, Song C E, Kim B S, Kang I N, Shin W S, Hwang D H. Chem. Mater., 2014, 26: 1234.
[88] Zhang M J, Gu Y, Guo X, Liu F, Zhang S Q, Huo L J, Russell T P, Hou J H. Adv. Mater., 2013, 25: 4944.
[89] Hwang M C, Kang H Y, Yu K,Yun H J, Kwon S K, Lee K H, Kim Y H. Solar Energy Materials & Solar Cells, 2014, 125: 39.
[90] Zhang M J, Guo X, Ma W, Zhang S Q, Huo L J, Ade H, Hou J H. Adv. Mater., 2014, 26: 2089.
[91] Shi Q Q, Fan H J, Liu Y, Hu W P, Li Y F, Zhan X W. Macromolecules, 2011, 44: 9173.
[92] Kim J H, Song C E, Kim H U, Grimsdale A C, Moon S J, Shin W S, Choi S K, Hwang D H. Chem.Mater., 2013, 25: 2722.
[93] Kim J H, Song C E, Shin N, Kang H, Wood S, Kang I N, Kim B J, Kim B S, Kim J S, Shin W S, Hwang D H. ACS Appl. Mater. Interfaces, 2013, 5: 12820.
[94] Kim J H, Lee M J,Yang H C, Hwang D H. J. Mater. Chem. A, 2014, 2: 6348.
[95] Sanjaykumar S R, Badgujar S, Song C E, Shin W S, Moon S J, Kang I N, Lee J, Cho S, Lee S K, Lee J C. Macromolecules, 2012, 45: 6938.
[96] Peng Q, Huang Q, Hou X B, Chang P P, Xu J, Deng S J. Chem. Commun., 2012, 48: 11452.
[97] Wu J S, Lin C T, Wang C L, Cheng Y J, Hsu C S. Chem. Mater., 2012, 24: 2391.
[98] Huang J, Zhu Y X, Zhang L J, Cai P, Xu X F, Chen J W, Cao Y. Polym. Chem., 2014, 52: 1652.
[99] Son H J, Lu L Y, Chen W, Xu T, Zheng T Y, Carsten B, Strzalka J, Darling S B, Chen L X, Yu L P. Adv. Mater., 2013, 25: 838.
[100] Peumans P, Uchida S, Forrest S R. Nature, 2003, 425: 158.
[101] Wang D H, Kyaw A K K, Gupta V, Bazan G C, Heeger A J. Adv. Energy Mater., 2013, 3: 1161.
[102] Liu Y S, Wan X J, Wang F, Zhou J Y, Long G K, Tian J G, Chen Y S. Adv. Mater., 2011, 23: 5387.
[103] Zhou J Y, Wan X J, Liu Y S, Zuo Y, Li Z, He G R, Long G K, Ni W, Li C X,Su X C, Chen Y S. J. Am.Chem. Soc., 2012, 134: 16345.
[104] Zhou J Y, Zuo Y, Wan X J, Long G K, Zhang Q, Ni W, Liu Y S, Li Z, He G R, Li C X, Kan B, Li M M, Chen Y S. J. Am. Chem. Soc., 2013, 135: 8484.
[105] Chen Y H, Du Z K, Chen W C, Liu Q, Suna L, Sun M L, Yang R Q. Org. Electron., 2014, 15: 405.
[106] Shen S L, Pei J, He C, Zhang J, Shen P, Zhang Y, Yi Y P, Zhang Z J, Li Z B, Li Y F. Chem. Mater., 2013, 25: 2274.
[107] Dutta P, Kim J, Eom S H, Lee W H, Kang I N, Lee S H. ACS Appl.Mater. Interfaces, 2012, 4: 6669.
[108] Loser S, Bruns C J, Miyauchi H, Ortiz R P, Facchetti A, Stupp S I, Marks T J. J. Am. Chem. Soc., 2011, 133: 8142.
[109] Lin Y Z, Ma L, Li Y F, Liu Y Q, Zhu D B, Zhan X W. Adv. Energy Mater., 2013, 3: 1166.
[110] Huang J H, Zhan C L, Zhang X, Zhao Y, Lu Z H, Jia H, Jiang B, Ye J, Zhang S L, Tang A L, Liu Y Q, Pei Q P, Yao J N. ACS Appl. Mater. Interfaces, 2013, 5: 203.
[111] Ha J J, Kim Y J, Park J G, An J J, Kwon S K, Park C E, Kim Y H. Chem. Asian J., 2014, 9: 1045.
[112] Kim Y J, Park K H, Ha J J, Chung D S, KimY H, Park C E. Phys. Chem. Chem. Phys., 2014, 16: 19874.
[113] Cui C H, Min J, Ho C, Ameri T, Yang P, Zhao J Z, Brabec C J, Wong W Y. Chem.Commun., 2013, 49: 4409.
[114] Lim N W, Cho N, Paek S Y, Kim C W, Lee J K, Ko J J. Chem. Mater., 2014, 26: 2283.

[1] 薛朝鲁门, 刘宛茹, 白图雅, 韩明梅, 莎仁, 詹传郎. 非富勒烯受体DA'D型稠环单元的结构修饰及电池性能研究[J]. 化学进展, 2022, 34(2): 447-459.
[2] 杜宇轩, 江涛, 常美佳, 戎豪杰, 高欢欢, 尚玉. 基于非稠环电子受体的有机太阳能电池材料与器件[J]. 化学进展, 2022, 34(12): 2715-2728.
[3] 任志华, 杨晓溪, 孙振东, 任婧, 桑楠, 周群芳, 江桂斌. 环境内分泌干扰物对雌激素受体表达与转录激活的调控效应及分析技术[J]. 化学进展, 2022, 34(10): 2121-2133.
[4] 侯晓涵, 刘胜男, 高清志. 小分子荧光探针在绿色农药开发中的应用[J]. 化学进展, 2021, 33(6): 1035-1043.
[5] 任飞, 石建兵, 佟斌, 蔡政旭, 董宇平. 具有聚集诱导发光性质的近红外荧光染料[J]. 化学进展, 2021, 33(3): 341-354.
[6] 徐翔, 李坤, 魏擎亚, 袁俊, 邹应萍. 基于非富勒烯小分子受体Y6的有机太阳能电池[J]. 化学进展, 2021, 33(2): 165-178.
[7] 徐云雪, 刘仁发, 徐坤, 戴志飞. 手术导航用荧光探针[J]. 化学进展, 2021, 33(1): 52-65.
[8] 沈赵琪, 程敬招, 张小凤, 黄微雅, 温和瑞, 刘诗咏. P3HT/非富勒烯受体异质结有机太阳电池[J]. 化学进展, 2019, 31(9): 1221-1237.
[9] 王兆翔, 马君, 高玉瑞, 刘帅, 冯欣, 陈立泉. 稳定富锂层状氧化物正极材料的结构与性能[J]. 化学进展, 2019, 31(11): 1591-1614.
[10] 朱本占, 沈忱, 盛治国. 膜受体介导双酚A低剂量内分泌干扰效应的分子机制[J]. 化学进展, 2019, 31(1): 167-179.
[11] 吴阳, 王再禹, 孟向毅, 马伟. 同步辐射共振软X射线散射对有机太阳能电池中活性层形貌的解析[J]. 化学进展, 2017, 29(1): 93-101.
[12] 卢梦霞, 张涛, 王文, 凌启淡. 基于萘二酰亚胺受体单元的n-型聚合物受体材料在光电领域的研究进展[J]. 化学进展, 2016, 28(6): 872-884.
[13] 姜贺, 靳继彪, 陈润锋, 郑超, 黄维. 基于给-受体结构的热活化延迟荧光材料[J]. 化学进展, 2016, 28(12): 1811-1823.
[14] 谢祥, 吕文珍, 陈润锋, 黄维. 有机太阳能电池给受体材料界面的微纳结构调控[J]. 化学进展, 2016, 28(11): 1591-1600.
[15] 伍宏伟, 陈亚运, 饶才辉, 刘传祥*. 含CH基的阴离子受体[J]. 化学进展, 2016, 28(10): 1501-1514.