English
新闻公告
More
化学进展 2014, Vol. 26 Issue (09): 1516-1526 DOI: 10.7536/PC140355 前一篇   后一篇

• 综述与评论 •

基于SERS技术的核酸检测

宋春元, 杨琰君, 汪联辉*   

  1. 南京邮电大学 信息材料与纳米技术研究院 有机电子与信息显示国家重点实验室培育基地 南京 210023
  • 收稿日期:2014-03-01 修回日期:2014-05-01 出版日期:2014-09-15 发布日期:2014-07-09
  • 通讯作者: 汪联辉 E-mail:iamlhwang@njupt.edu.cn
  • 基金资助:

    国家重点基础研究发展计划(973)项目(No. 2012CB933301)、国家自然科学基金项目(No. 61302027)、[JP2]江苏省自然科学基金项目(No. BK20130871)、“有机与生物光电子学”教育部创新团队项目(No. IRT1148)和生物电子学国家重点实验室开放研究基金(No. 2013G2)资助

SERS-Based Nucleic Acid Detection

Song Chunyuan, Yang Yanjun, Wang Lianhui*   

  1. Key Lab Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
  • Received:2014-03-01 Revised:2014-05-01 Online:2014-09-15 Published:2014-07-09
  • Supported by:

    The work was supported by the National Key Basic Research Program of China (973) (No. 2012CB933301), the National Natural Science Foundation of China (No. 61302027), the Natural Science Foundation of Jiangsu Province (No. BK20130871), the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT1148), and the Open Research Fund of State Key Laboratory of Bioelectronics (No. 2013G2)

表面增强拉曼散射(SERS)技术因其具有超灵敏和非破坏性的检测能力,在生命科学领域已经显示出巨大的应用潜力和研究价值。本文综述了SERS技术在核酸检测方面的最新研究进展,重点介绍了基于SERS技术的非标记型、标记型以及其他一些检测方法的原理及研究成果,并讨论了基于SERS的核酸检测技术有待进一步解决的关键问题。

Surface-enhanced Raman scattering (SERS) technology has revealed considerably potential application in the field of life science due to its ultrasensitive detectability and non-destructivity, which is considered as a powerful tool for detection of nucleic acid. The article reviews recent advances in SERS-based detection of nucleic acids, including labeled and label-free detections as well as other methods. The principles and detection strategies of these different methods are introduced, especially the labeled detection using SERS tags via sandwich structure and hairpin structure. We also made a detailed explanation of the basic structure of SERS tags and their recent developments. By analyzing the detection strategies and summarizing recent achievements, some issues related to SERS-based nucleic acid detection techniques are also discussed.

Contents
1 Introduction
2 Principle of SERS enhancement
3 Nucleic acid detection based on SERS
3.1 Label-free detection
3.2 Labeled detection
3.3 SERS-based other methods
4 Conclusion and outlook

中图分类号: 

()

[1] Lipkowski J, Ross P N. Adsorption of Molecules at Metal Electrodes. New York: Wiley. VCH, 1992.
[2] Fleischmann M, Hendra P, McQuillan A. Chem. Phys. Lett., 1974, 26(2): 163.
[3] Jeanmaire D L, van Duyne R P. J. Electroanal. Chem. Interfacial Electrochem., 1977, 84(1): 1.
[4] Albrecht M G, Creighton J A. J. Am. Chem. Soc., 1977, 99(15): 5215.
[5] Betz J F, Cheng Y, Rubloff G W. Analyst, 2012, 137(4): 826.
[6] Hering K, Cialla D, Ackermann K, Dörfer T, Möller R, Schneidewind H, Mattheis R, Fritzsche W, Rösch P, Popp J. Anal. Bioanal. Chem., 2008, 390(1): 113.
[7] Palonpon A F, Ando J, Yamakoshi H, Dodo K, Sodeoka M, Kawata S, Fujita K. Nat. Protoc., 2013, 8(4): 677.
[8] Vendrell M, Maiti K K, Dhaliwal K, Chang Y T. Trends Biotechnol., 2013, 31(4): 249.
[9] Wang Y, Ravindranath S, Irudayaraj J. Anal. Bioanal. Chem., 2011, 399(3): 1271.
[10] Kneipp K, Wang Y, Kneipp H, Perelman L T, Itzkan I, Dasari R R, Feld M S. Phys. Rev. Lett., 1997, 78(9):1667.
[11] Nie S, Emory S R. Science, 1997, 275(5303): 1102.
[12] Porter M D, Lipert R J, Siperko L M, Wang G, Narayanan R. Chem. Soc. Rev., 2008, 37(5): 1001.
[13] Mulvaney S P, Musick M D, Keating C D, Natan M J. Langmuir, 2003, 19(11): 4784.
[14] Kneipp J, Kneipp H, Wittig B, Kneipp K. Nanomed. Nanotechnol. Biol. Med., 2010, 6(2): 214.
[15] Kirtley J R, Jha S S, Tsang J C. Solid State Commun., 1980, 35(7): 509.
[16] Park T H, Galperin M. Phys. Rev. B, 2011, 84(7): 075447.
[17] Xu H, Aizpurua J, Kll M, Apell P. Phys. Rev. E, 2000, 62(3): 4318.
[18] Doering W E, Nie S. J. Phys. Chem. B, 2002, 106(2): 311.
[19] Campion A, Kambhampati P. Chem. Soc. Rev., 1998, 27(4): 241.
[20] Kelly K L, Coronado E, Zhao L L, Schatz G C. J. Phys. Chem. B, 2003, 107(3): 668.
[21] Kneipp K, Kneipp H, Itzkan I, Dasari R R, Feld M S. J. Phys. Condens. Matter, 2002, 14(18): R597.
[22] Michaels A M, Jiang J, Brus L. J. Phys. Chem. B, 2000, 104(50): 11965.
[23] Xu H, Bjerneld E J, Kll M, Börjesson L. Phys. Rev. Lett., 1999, 83(21): 4357.
[24] Li W, Camargo P H, Lu X, Xia Y. Nano Lett., 2008, 9(1): 485.
[25] Kerker M. Acc. Chem. Res., 1984, 17(8): 271.
[26] Moskovits M. Rev. Mod. Phys., 1985, 57(3): 783.
[27] Feuillie C, Merheb M M, Gillet B, Montagnac G, Daniel I, Hnni C. PLoS One, 2011, 6(5): e17847.
[28] Pafundo S, Gullì M, Marmiroli N. Anal. Bioanal. Chem., 2010, 396(5): 1831.
[29] Rosi N L, Mirkin C A. Chem. Rev., 2005, 105(4): 1547.
[30] Sassolas A, Blum L J, Leca-Bouvier B D. Biosens. Bioelectron., 2011, 26(9): 3725.
[31] Barhoumi A, Zhang D, Tam F, Halas N J. J. Am. Chem. Soc., 2008, 130(16): 5523.
[32] Barhoumi A, Halas N J. J. Am. Chem. Soc., 2010, 132(37): 12792.
[33] Panikkanvalappil S R, Mackey M A, El-Sayed M A. J. Am. Chem. Soc., 2013, 135(12): 4815.
[34] Driskell J, Seto A, Jones L, Jokela S, Dluhy R, Zhao Y P, Tripp R. Biosens. Bioelectron., 2008, 24(4): 917.
[35] Abell J L, Garren J M, Driskell J D, Tripp R A, Zhao Y. J. Am. Chem. Soc., 2012, 134(31):12889.
[36] Erol M, Han Y, Stanley S K, Stafford C M, Du H, Sukhishvili S. J. Am. Chem. Soc., 2009, 131(22): 7480.
[37] Langille M R, Personick M L, Zhang J, Mirkin C A. J. Am. Chem. Soc., 2012, 134(35): 14542.
[38] Personick M L, Langille M R, Zhang J, Mirkin C A. Nano Lett., 2011, 11(8): 3394.
[39] Quan Z, Wang Y, Fang J. Acc. Chem. Res., 2012, 46(2): 191.
[40] Garcia-Leis A, Garcia-Ramos J V, Sanchez-Cortes S. J. Phys. Chem. C, 2013, 117(15): 7791.
[41] Jiang Q, Jiang Z, Zhang L, Lin H, Yang N, Li H, Liu D, Xie Z, Tian Z. Nano Res., 2011, 4(6): 612.
[42] Khoury C G, Vo-Dinh T. J. Phys. Chem. C, 2008, 112(48): 18849.
[43] Miyamoto T, Saito S, Isobe T, Nakajima A, Matsushita S. Chem. Commun., 2012, 48(11): 1668.
[44] Jia W, Li J, Jiang L. ACS Appl. Mater. Interfaces, 2013, 5(15): 6886.
[45] Li J, Wu J, Zhang X, Liu Y, Zhou D, Sun H, Zhang H,Yang B. J. Phys. Chem. C, 2011, 115(9): 3630.
[46] Lu G, Li C, Shi G. Chem. Mater., 2007, 19(14): 3433.
[47] Sanchez-Gaytan B L, Qian Z, Hastings S P, Reca M L, Fakhraai Z, Park S J. J. Phys. Chem. C, 2013, 117(17): 8916.
[48] Pradhan M, Chowdhury J, Sarkar S, Sinha A K, Pal T. J. Phys. Chem. C, 2012, 116(45): 24301.
[49] Sajanlal P R, Pradeep T. Nano Res., 2009, 2(4): 306.
[50] Xie J, Zhang Q, Lee J Y, Wang D I. ACS Nano, 2008, 2(12): 2473.
[51] You H, Ji Y, Wang L, Yang S, Yang Z, Fang J, Song X, Ding B. J. Mater. Chem., 2012, 22(5): 1998.
[52] Pande S, Ghosh S K, Praharaj S, Panigrahi S, Basu S, Jana S, Pal A, Tsukuda T, Pal T. J. Phys. Chem. C, 2007, 111(29): 10806.
[53] Panigrahi S, Basu S, Praharaj S, Pande S, Jana S, Pal A, Ghosh S K, Pal T. J. Phys. Chem. C, 2007, 111(12): 4596.
[54] Wu L, Wang Z, Zong S, Huang Z, Zhang P, Cui Y. Biosens. Bioelectron., 2012, 38(1): 94.
[55] Li Z, Yuan J, Chen Y, Palmer R, Wilcoxon J. Appl. Phys. Lett., 2005, 87: 243103.
[56] Wang Y, Yan B, Chen L. Chem. Rev., 2012, 113(3): 1391.
[57] Yoon J, Choi N, Ko J, Kim K, Lee S, Choo J. Biosens. Bioelectron., 2013, 47: 62.
[58] Liang Y, Gong J L, Huang Y, Zheng Y, Jiang J H, Shen G L,Yu R Q. Talanta, 2007, 72(2): 443.
[59] Wang X X, Wu Q, Shan Z, Huang Q M. Biosens. Bioelectron., 2011, 26(8): 3614.
[60] Liu M, Wang Z, Zong S, Zhang R, Zhu D, Xu S, Wang C, Cui Y. Anal. Bioanal. Chem., 2013, 405(18): 6131.
[61] Wabuyele M B, Vo-Dinh T. Anal. Chem., 2005, 77(23): 7810.
[62] Driskell J D, Shanmukh S, Liu Y, Chaney S B, Tang X J, Zhao Y P, Dluhy R A. J. Phys. Chem. C, 2008, 112(4): 895.
[63] Song C, Abell J L, He Y, Murph S H, Cui Y, Zhao Y. J. Mater. Chem., 2012, 22(3): 1150.
[64] Tabatabaei M, Sangar A, Kazemi-Zanjani N, Torchio P, Merlen A, Lagugné-Labarthet F. J. Phys. Chem. C, 2013, 117(28): 14778.
[65] Jia J, Wang B, Wu A, Cheng G, Li Z, Dong S. Anal. Chem., 2002, 74(9): 2217.
[66] Kim B, Tripp S L, Wei A. J. Am. Chem. Soc., 2001, 123(32): 7955.
[67] Mirkin C A, Letsinger R L, Mucic R C, Storhoff J J. Nature, 1996, 382(6592): 607.
[68] Santhanam V, Liu J, Agarwal R, Andres R P. Langmuir, 2003, 19(19): 7881.
[69] Cao Y C, Jin R, Mirkin C A. Science, 2002, 297(5586): 1536.
[70] Liu Y, Wu P. ACS Appl. Mater. Interfaces, 2013, 5(12): 5832.
[71] Braun G, Lee S J, Dante M, Nguyen T Q, Moskovits M, Reich N. J. Am. Chem. Soc., 2007, 129(20): 6378.
[72] Li M, Cushing S K, Liang H, Suri S, Ma D, Wu N. Anal. Chem., 2013, 85(4): 2072.
[73] Kang T, Yoo S M, Yoon I, Lee S Y, Kim B. Nano Lett., 2010, 10(4):1189.
[74] Zhang H, Harpster M H, Park H J, Johnson P A. Anal. Chem., 2011, 83(1): 254.
[75] Zhang H, Harpster M H, Wilson W C, Johnson P A. Langmuir, 2012, 28(8): 4030.
[76] Sun L, Yu C, Irudayaraj J. Anal. Chem., 2008, 80(9): 3342.
[77] Jin R, Cao Y C, Thaxton C S, Mirkin C A. Small, 2006, 2(3): 375.
[78] Li J M, Ma W F, You L J, Guo J, Hu J,Wang C C. Langmuir, 2013, 29(20): 6147.
[79] Wang H N, Dhawan A, Du Y, Batchelor D, Leonard D N, Misra V, Vo-Dinh T. Phys. Chem. Chem. Phys., 2013, 15(16): 6008.
[80] Wang H N, Fales A M, Zaas A K, Woods C W, Burke T, Ginsburg G S, Vo-Dinh T. Anal. Chim. Acta, 2013, 786: 153.
[81] Ngo H T, Wang H N, Fales A M, Vo-Dinh T. Anal. Chem., 2013, 85(13): 6378.
[82] Jung J, Chen L, Lee S, Kim S, Seong G H, Choo J, Lee E K, Oh C H, Lee S. Anal. Bioanal. Chem., 2007, 387(8): 2609.
[83] 胡娟(Hu J), 张春阳(Zhang C Y). 化学进展(Progress in Chemistry), 2010, 22(8): 1641.
[84] Dou X, Takama T, Yamaguchi Y, Hirai K, Yamamoto H, Doi S, Ozaki Y. Appl. Opt., 1998, 37(4): 759.
[85] Isola N R, Stokes D L,Vo-Dinh T. Anal. Chem., 1998, 70(7): 1352.
[86] Graham D, Mallinder B J, Whitcombe D, Watson N D, Smith W E. Anal. Chem., 2002, 74(5): 1069.
[87] Graham D, Mallinder B J, Whitcombe D, Smith W E. ChemPhysChem, 2001, 2(12): 746.
[88] Monaghan P B, McCarney K M, Ricketts A, Littleford R E, Docherty F, Smith W E, Graham D, Cooper J M. Anal. Chem., 2007, 79(7): 2844.
[89] Crew E, Yan H, Lin L, Yin J, Skeete Z, Kotlyar T, Tchah N, Lee J, Bellavia M, Goodshaw I, Joseph P, Luo J, Gal S, Zhong C J. Analyst, 2013, 138(17): 4941.

[1] 黄炎, 刘国东, 张学记. 新型冠状病毒(COVID-19)的检测和诊断[J]. 化学进展, 2020, 32(9): 1241-1251.
[2] 宋春元, 陈文蔷, 杨琰君, 杨博玥, 苏邵, 汪联辉. 基于SERS探针技术的细胞识别、成像与诊疗[J]. 化学进展, 2015, 27(1): 91-102.
[3] 王晓萍, 洪夏云, 詹舒越, 黄子昊, 庞凯. 表面等离子体共振传感技术和生物分析仪[J]. 化学进展, 2014, 26(07): 1143-1159.
[4] 邵锋, 陈坤, 罗志辉, 王艳君, 陆冬莲, 韩鹤友* . SERS技术在疾病诊断和生物分析中的应用[J]. 化学进展, 2012, 24(12): 2391-2402.
[5] 朱德斌*, 马文革, 邢晓波 . 电化学发光分析方法在核酸检测中的应用[J]. 化学进展, 2012, 24(12): 2367-2373.
[6] 胡娟 张春阳. 应用于基因分析的最新SERS技术*[J]. 化学进展, 2010, 22(08): 1641-1647.
阅读次数
全文


摘要

基于SERS技术的核酸检测