English
新闻公告
More
化学进展 2014, Vol. 26 Issue (08): 1395-1408 DOI: 10.7536/PC140308 前一篇   后一篇

• 综述与评论 •

抗肿瘤药物输送系统

黎燕, 黄卫*, 黄平, 朱新远, 颜德岳   

  1. 上海交通大学化学化工学院 金属基复合材料国家重点实验室 上海 200240
  • 收稿日期:2014-03-01 修回日期:2014-04-01 出版日期:2014-08-15 发布日期:2014-06-10
  • 通讯作者: 黄卫 E-mail:hw66@sjtu.edu.cn
  • 基金资助:

    国家重点基础研究发展计划(973)项目(No. 2009CB930400,2012CB821500,2013CB834506,2014CB643600)和国家自然科学基金项目(No. 21174086,21074069,91127047)资助

Anti-Cancer Drug Delivery System

Li Yan, Huang Wei*, Huang Ping, Zhu Xinyuan, Yan Deyue   

  1. School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2014-03-01 Revised:2014-04-01 Online:2014-08-15 Published:2014-06-10
  • Supported by:

    The work was supported by the National Basic Research Program of China (No. 2009CB930400, 2012CB821500, 2013CB834506, 2014CB643600) and the National Natural Science Foundation of China (No. 21174086, 21074069, 91127047)

大多数小分子抗肿瘤药物均存在水溶性差、给药量大、体内半衰期短等问题,它们经口服或静脉注射给药后,只能通过自由扩散方式进入细胞,往往缺乏选择性,同时,对肿瘤细胞和正常细胞产生细胞毒性,具有较强的毒副作用,甚至对患者造成二次伤害。因此,它们在临床应用上受到很大限制。通过选择适宜的载体材料构筑抗肿瘤药物输送系统(如胶束、凝胶、纳米粒子等),不仅可以延长小分子抗肿瘤药物的半衰期、降低其毒副作用,而且还可提高其溶解性和生物利用度,因而受到广大科研人员及制药企业的广泛重视。到目前为止,抗肿瘤药物输送系统的发展历史已有60多年,大致可分为传统型、智能型和靶向型三个不同的发展阶段。本文将从这三个不同发展阶段来综述抗肿瘤药物输送系统及其最新的研究进展,并对其未来的发展进行展望。

Currently, most of the reported small molecular anti-cancer drugs have some inherent drawbacks, such as poor water solubility, high drug dosage, short drug half-life in vivo and so on. After taken by oral administration or intravenous injection, these anti-cancer drugs can permeate into cells only by the approach of free diffusion. In general, they can not only kill cancer cells but also normal ones due to lacking of selectivity, and even cause secondary injury to patients. As a result, the clinical applications of these anti-cancer drugs are limited to a large extent. The anti-cancer drug delivery systems (such as micelles, nanogels and nanoparticles, etc.) constructed from the suitable carrier materials may not only prolong the circulation in blood compartments and reduce side effects to normal tissues, but also enhance the water solubility as well as improve the bioavailability of the small molecular anti-cancer drugs. Thus, more and more attentions are paid to them by researchers and pharmacy companies. Up to now, anti-cancer drug delivery systems have advanced over 60 years, and the evolution can be divided into three stages approximately. In this review, three different development stages and the recent progress of anti-cancer drug delivery systems are summarized. Besides, the future development of anti-cancer drug delivery systems is also prospected.

Contents
1 Introduction
2 Anti-cancer drug delivery system
2.1 The first generation of drug delivery system
2.2 The second generation of drug delivery system
2.3 The third generation of drug delivery system
3 Outlook

中图分类号: 

()

[1] Chen W Q, Zeng H M, Zheng R Q, Zhang S W, He J. Chin. J. Cancer Res., 2012, 24: 1.
[2] Allen T M. Cullis P R. Science, 2004, 303: 1818.
[3] Shen Y Q, Jin E, Zhang B, Murphy C J, Sui M H, Zhao J, Wang J Q, Tang J B, Fan M H, Kirk E V, Murdoch W J. J. Am. Chem. Soc., 2010, 132: 4259.
[4] Danquah M K, Zhang X A, Mahato R I. Adv. Drug Deliv. Rev., 2011, 63: 623.
[5] Liggins R T, Burt H M. Adv. Drug Deliv. Rev., 2002, 54: 191.
[6] Du W T, Hong L, Yao T W, Yang X C, He Q J, Yang B, Hu Y Z. Bioorg. Med. Chem., 2007, 15: 6323.
[7] Rösler A, Vandermeulen G W M, Klok H A. Adv. Drug Deliv. Rev., 2012, 64: 270.
[8] Deng C, Jiang Y J, Cheng R, Meng F H, Zhong Z Y. Nano Today, 2012, 7: 467.
[9] Gao G H, Li Y, Lee D S. J. Control. Release, 2013, 169: 180.
[10] Garofalo C, Capuano G, Sottile R, Tallerico R, Adami R, Reverchon E, Carbone E, Izzo L, Pappalardo D. Biomacromolecules, 2014, 15: 403.
[11] Chang G T, Ci T Y, Yu L, Ding J D. J. Control. Release, 2011, 156: 21.
[12] Joung Y K, Jang J Y, Choi J H, Han D K, Park K D. Mol. Pharm., 2013, 10: 685.
[13] Zhang J X, Ma P X. Adv. Drug Deliv. Rev., 2013, 65: 1215.
[14] Goncalves M, Maciel D, Capelo D, Xiao S L, Sun W J, Shi X Y, Rodrigues J, Tomas H, Li Y L. Biomacromolecules, 2014, 15: 492.
[15] Zheng J, Zhu G Z, Li Y H, Li C M, You M X, Chen T, Song E, Yang R H, Tan W H. ACS Nano, 2013, 7: 6545.
[16] Naahidi S, Jafari M, Edalat F, Raymond K, Khademhosseini A, Chen P. J. Control. Release, 2013, 166: 182.
[17] Xue X, Hall M D, Zhang Q, Wang P C, Gottesman M M, Liang X J. ACS Nano, 2013, 7: 10452.
[18] 张磊(Zang L), 刘晓燕(Liu X Y), 沈晶晶(Shen J J), 卢晓梅(Lu X M), 范曲立(Fan Q L), 黄维(Huang W). 化学进展(Prog. Chem.), 2013, 25: 1375.
[19] Quadir M A, Haag R. J. Control. Release, 2012, 161: 484.
[20] Murugan E, Geetha R D P, Yogaraj V. Colloids Surf. B Biointerfaces, 2014, 114: 121.
[21] Mignani S, El Kazzouli S, Bousmina M, Majoral J P. Adv. Drug Deliv. Rev., 2013, 65: 1316.
[22] Bildstein L, Dubernet C, Couvreur P. Adv. Drug Deliv. Rev., 2011, 63: 3.
[23] Bala V, Rao S, Boyd B J, Prestidge C A. J. Control. Release, 2013, 172: 48.
[24] 任天斌(Ren T B), 侠文娟(Xia W J), 吴畏(Wu W), 李永勇(Li Y Y). 化学进展(Prog. Chem.), 2013, 25: 775.
[25] Shi J J, Votruba A R, Farokhzad O C, Langer R. Nano Lett., 2010, 10: 3223.
[26] Farokhzad O C, Langer R. ACS Nano, 2009, 3: 16.
[27] Wagner V, Dullaart A, Bock A K, Zweck A. Nat. Biotechnol., 2006, 24: 1211.
[28] Zhang L, Gu F X, Chan J M, Wang A Z, Langer R S, Farokhzad O C. Clin. Pharmacol. Ther., 2008, 83: 761.
[29] Zhang Y, Chan H F, Leong K W. Adv. Drug Deliv. Rev., 2013, 65: 104.
[30] Park K. ACS Nano, 2013, 7: 7442.
[31] Bangham A D, Standish M M, Watkins J C. J. Mol. Biol., 1965, 13: 238.
[32] Kim Y C, Park J H, Prausnitz M R. Adv. Drug Deliv. Rev., 2012, 64: 1547.
[33] Ringsdorf H J. Polym. Sci. Polym. Symp., 1975, 51: 135.
[34] Lutolf M P, Hubbell J A. Nat. Biotechnol., 2005, 23: 47.
[35] Duncan R. Nat. Rev. Cancer, 2006, 6: 688.
[36] Bui D T, Maksimenko A, Desmaёle D, Harrisson S, Vauthier C, Couvreur P, Nicolas J. Biomacromolecules, 2013, 14: 2837.
[37] Chitkara D, Mittal A, Behrman S W, Kumar N, Mahato R I. Bioconjugate Chem., 2013, 24: 1161.
[38] Wang H B, Wang Y, Chen Y J, Jin Q, Ji J. Polym. Chem., 2014, 5: 854.
[39] Wang H B, Xu F M, Wang Y, Liu X S, Jin Q, Ji J. Polym. Chem., 2013, 4: 3012.
[40] Yang Y Q, Zhao B, Li Z D, Lin W J, Zhang C Y, Guo X D, Wang J F, Zhang L J. Acta Biomater., 2013, 9: 7679.
[41] Seki K, Tirrell D. Macromolecules, 1984, 17: 1692.
[42] Ropert C, Lavignon M, Dubernet C, Couvreur P, Malvy C. Biochem. Biophys. Res. Commun., 1992, 183: 879.
[43] Thomas J L, Tirrell D A. Acc. Chem. Res., 1992, 25: 336.
[44] Martin T J, Procházka K, Munk P, Webber S E. Macromolecules, 1996, 29: 6071.
[45] Bae Y, Fukushima S, Harada A, Kataoka K. Angew. Chem. Int. Ed., 2003, 42: 4640.
[46] Zhang C Y, Yang Y Q, Huang T X, Zhao B, Guo X D, Wang J F, Zhang L J. Biomaterials, 2012, 33: 6273.
[47] Koyamatsu Y, Hirano T, Kakizawa Y, Okano F, Takarada T, Maeda M. J. Control. Release, 2014, 173: 89.
[48] Duan X P, Xiao J S, Yin Q, Zhang Z W, Yu H J, Mao S R, Li Y P. ACS Nano, 2013, 7: 5858.
[49] She W C, Li N, Luo K, Guo C H, Wang G, Geng Y Y, Gu Z W. Biomaterials, 2013, 34: 2252.
[50] Sun T M, Wang Y C, Wang F, Du J Z, Mao C Q, Sun C Y, Tang R Z, Liu Y, Zhu J, Zhu Y H, Yang X Z, Wang J. Biomaterials, 2014, 35: 836.
[51] Jin N X, Morin E A, Henn D M, Cao Y, Woodcock J W, Tang S C, He W, Zhao B. Biomacromolecules, 2013, 14: 2713.
[52] 张驰宇(Zhang C Y), 贺高红(He G H), 焉晓明(Yan X M), 段志军(Duan Z J). 功能材料(J. Funct. Mater.), 2010, 12: 2153.
[53] Wang J, Liu C H, Shuai Y, Cui X Y, Nie L. Colloids Surf. B: Biointerfaces, 2014, 113: 223.
[54] Scarpa J S, Mueller D D, Klotz I M. J. Am. Chem. Soc., 1967, 89: 6024.
[55] Cammas S, Suzuki K, Sone C, Sakurai Y, Kataoka K, Okano T. J. Control. Release, 1997, 48: 157.
[56] Chung J E, Yokoyama M, Yamato M, Aoyagi T, Sakurai Y, Okano T. J. Control. Release, 1999, 62: 115.
[57] Chung J E, Yokoyama M, Okano T. J. Control. Release, 2000, 65: 93.
[58] Luo Y L, Yang X L, Xu F, Chen Y S, Zhang B. Colloids Surf. B: Biointerfaces, 2014, 114: 150.
[59] Zhu Z C, Gao N, Wang H J, Sukhishvili S A. J. Control. Release, 2013, 171: 73.
[60] Wei H, Wu D Q, Li Q, Chang C, Zhou J P, Zhang X Z, Zhuo R X. J. Phys. Chem. C, 2008, 112: 15329.
[61] Loh X J, Wu Y L, Joseph S W T, Irzuan N M N, Zhang Z X, Xu F J, Kang E T, Neoh K G, Li J. Polymer, 2008, 49: 5084.
[62] Chang C, Wei H, Quan C Y, Li Y Y, Liu J, Wang Z C, Cheng S X, Zhang X Z, Zhuo R X. J. Polym. Sci. Part A: Polym. Chem., 2008, 46: 3048.
[63] Kohori F, Sakai K, Aoyagi T, Yokoyama M, Sakurai Y, Okano T. J. Control. Release, 1998, 55: 87.
[64] Loh X J, Zhang Z X, Wu Y L, Lee T S, Li J. Macromolecules, 2009, 42: 194.
[65] Moghadam M N, Kolesov V, Vogel A, Klok H A, Pioletti D P. Biomaterials, 2014, 35: 450.
[66] Lin Z Q, Gao W, Hu H X, Ma K, He B, Dai W B, Wang X Q, Wang J C, Zhang X, Zhang Q. J. Control. Release, 2014, 174: 161.
[67] Boustta M, Colombo P E, Lenglet S, Poujol S, Vert M. J. Control. Release, 2014, 174: 1.
[68] Koning G A, Eggermont A M M, Lindner L H, ten Hagen T L M. Pharm. Res., 2010, 27: 1750.
[69] May J P, Li S D. Recent Pat. Biomed. Eng., 2012, 5: 148.
[70] Ta T, Porter T M. J. Control. Release, 2013, 169: 112.
[71] May J P, Ernsting M J, Undzys E, Li S D. Mol. Pharm., 2013, 10: 4499.
[72] Li L, ten Hagen T L M, Hossann M, Süss R, van Rhoon G C, Eggermont A M M, Haemmerich D, Koning G A. J. Control. Release, 2013, 168: 142.
[73] Kuppusamy P, Li H Q, IIangovan G, Cardounel A J, Zweier J L, Yamada K, Krishna M C, Mitchell J B. Cancer Res., 2002, 62: 307.
[74] Meng F H, Hennink W E, Zhong Z Y. Biomaterials, 2009, 30: 2180.
[75] Ryu J H, Roy R, Ventura J, Thayumanavan S. Langmuir, 2010, 26: 7086.
[76] Cheng R, Feng F, Meng F H, Deng C, Feijen J, Zhong Z Y. J. Control. Release, 2011, 152: 2.
[77] Kakizawa Y, Harada A, Kataoka K. J. Am. Chem. Soc., 1999, 121: 11247.
[78] Kakizawa Y, Harada A, Kataoka K. Biomacromolecules, 2001, 2: 491.
[79] Oishi M, Hayama T, Akiyama Y, Takae S, Harada A, Yamasaki Y, Nagatsugi F, Sasaki S, Nagasaki Y, Kataoka K. Biomacromolecules, 2005, 6: 2449.
[80] Takae S, Miyata K, Oba M, Ishii T, Nishiyama N, Itaka K, Yamasaki Y, Koyama H, Kataoka K. J. Am. Chem. Soc., 2008, 130: 6001.
[81] Dong W F, Kishimura A, Anraku Y, Chuanoi S, Kataoka K. J Am. Chem. Soc., 2009, 131: 3804.
[82] Matsumoto S, Christie R J, Nishiyama N, Miyata K, Ishii A, Oba M, Koyama H, Yamasaki Y, Kataoka K. Biomacromolecules, 2009, 10: 119.
[83] Thambi T, Yoon H Y, Kim K, Kwon I C, Yoo C K, Park J H. Bioconjugate Chem., 2011, 22: 1924.
[84] Sun Y, Zou W, Bian S Q, Huang Y H, Tan Y F, Liang J, Fan Y J, Zhang X D. Biomaterials, 2013, 34: 6818.
[85] Cui C, Xue Y N, Wu M, Zhang Y, Yu P, Liu L, Zhuo R X, Huang S W. Biomaterials, 2013, 34: 3858.
[86] Page S M, Martorella M, Parelkar S, Kosif I, Emrick T. Mol. Pharm., 2013, 10: 2684.
[87] Liu J Y, Pang Y, Huang W, Huang X H, Meng L L, Zhu X Y, Zhou Y F, Yan D Y. Biomacromolecules, 2011, 12: 1567.
[88] Liu J Y, Huang W, Pang Y, Huang P, Zhu X Y, Zhou Y F, Yan D Y. Angew. Chem. Int. Ed., 2011, 50: 9162.
[89] Liu J Y, Pang Y, Huang W, Zhu Z Y, Zhu X Y, Zhou Y F, Yan D Y. Biomacromolecules, 2011, 12: 2407.
[90] Cao W, Zhang X L, Miao X M, Yang Z M, Xu H P. Angew. Chem. Int. Ed., 2013, 52: 6233.
[91] Ding Y, Yi Y, Xu H P, Wang Z Q, Zhang X. Chem. Commun., 2014, 50: 2585.
[92] Ma N, Xu H, An L, Li J, Sun Z, Zhang X. Langmuir, 2011, 27: 5874.
[93] Zhang X, Wang C. Chem. Soc. Rev., 2011, 40: 94.
[94] Xu H P, Cao W, Zhang X. Acc. Chem. Res., 2013, 46: 1647.
[95] Fu Y, Chen J Y, Xu H P, Oosterwijck C V, Zhang X, Dehaen W, Smet M. Macromol. Rapid Commun., 2012, 33: 798.
[96] Ma N, Li Y, Xu H P, Wang Z Q, Zhang X. J. Am. Chem. Soc., 2010, 132: 442.
[97] Liu J Y, Pang Y, Chen J, Huang P, Huang W, Zhu X Y, Yan D Y. Biomaterials, 2012, 33: 7765.
[98] Wang G, Tong X, Zhao Y. Macromolecules, 2004, 37: 8911.
[99] Jiang J Q, Tong X, Zhao Y. J. Am. Chem. Soc., 2005, 127: 8290.
[100] Li Y M, Qian Y F, Liu T, Zhang G Y, Liu S Y. Biomacromolecules, 2012, 13: 3877.
[101] Chen L F, Wang W Q, Su B, Wen Y Q, Li C B, Zhou Y B, Li M Z, Shi X D, Du H W, Song Y L, Jiang L. ACS Nano, 2014, 8: 744.
[102] Jana A, Devi K S, Maiti T K, Singh N D. J. Am. Chem. Soc., 2012, 134: 7656.
[103] Goodwin A P, Mynar J L, Ma Y Z, Fleming G R, Fréchet J M J. J. Am. Chem. Soc., 2005, 127: 9952.
[104] Liu G Y, Chen C J, Li D D, Wang S S, Ji J. J. Mater. Chem., 2012, 22: 16865.
[105] Sun L, Ma X F, Dong C M, Zhu B S, Zhu X Y. Biomacromolecules, 2012, 13: 3581.
[106] Lin H M, Wang W K, Hsiung P A, Shyu S G. Acta Biomater., 2010, 6: 3256.
[107] Yang J, He W D, He C, Tao J, Chen S Q, Niu S M, Zhu S L. J. Polym. Sci. Part A: Polym. Chem., 2013, 51: 3791.
[108] Guardado-Alvarez T M, Sudha D L, Russell M M, Schwartz B J, Zink J I. J. Am. Chem. Soc., 2013, 135: 14000.
[109] Cao J, Huang S S, Chen Y Q, Li S W, Li X, Deng D W, Qian Z Y, Tang L P, Gu Y Q. Biomaterials, 2013, 34: 6272.
[110] Zhang P, Steelant W, Kumar M, Scholfield M. J. Am. Chem. Soc., 2007, 129: 4526.
[111] Chen G Y, Qiu H L, Prasad P N, Chen X Y. Chem. Rev., 2014, 114: 5161.
[112] Wang C, Cheng L, Liu Z. Biomaterials, 2011, 32: 1110.
[113] Xu H, Cheng L, Wang C, Ma X X, Li Y G, Liu Z. Biomaterials, 2011, 32: 9364.
[114] Shen J, Zhao L, Han G. Adv. Drug Deliv. Rev., 2013, 65: 744.
[115] Dai Y L, Xiao H H, Liu J H, Yuan Q H, Ma P A, Yang D M, Li C X, Cheng Z Y, Hou Z Y, Yang P P, Lin J. J. Am. Chem. Soc., 2013, 135: 18920.
[116] Kim H, Lee D, Kim J, Kim T, Kim W J. ACS Nano, 2013, 7: 6735.
[117] Tan S Y, Grimes S. Singapore Med. J., 2010, 51: 842.
[118] Devadasu V R, Bhardwaj V, Ravi K M N V. Chem. Rev., 2013, 113: 1686.
[119] Miao D Y, Jiang M Y, Liu Z Y, Gu G Z, Hu Q Y, Kang T, Song Q X, Yao L, Li W, Gao X L, Sun M J, Chen J. Mol. Pharm., 2014, 11: 90.
[120] Wu J H, Song C C, Jiang C X, Shen X, Qiao Q, Hu Y Q. Mol. Pharm., 2013, 10: 3555.
[121] Tang J, Zhang L, Liu Y Y, Zhang Q Y, Qin Y, Yin Y J, Yuan W M, Yang Y T, Xie Y F, Zhang Z R, He Q. Int. J. Pharm., 2013, 454: 31.
[122] Miura Y, Takenaka T, Toh K, Wu S R, Nishihara H, Kano M R, Ino Y, Nomoto T, Matsumoto Y, Koyama H, Cabral H, Nishiyama N, Kataoka K. ACS Nano, 2013, 7: 8583.
[123] Hariri G, Edwards A D, Merrill T B, Greenbaum J M, van der Ende A E, Harth E. Mol. Pharm., 2014, 11: 265.
[124] Xu W J, Siddiqui I A, Nihal M, Pilla S, Rosenthal K, Mukhtar H, Gong S Q. Biomaterials, 2013, 34: 5244.
[125] Li X, Zhao Q H, Qiu L Y. J. Control. Release, 2013, 171: 152.
[126] Guaragna A, Chiaviello A, Paolella C, D’Alonzo D, Palumbo G, Palumbo G. Bioconjugate Chem., 2012, 23: 84.
[127] Fan J Q, Zeng F, Wu S Z, Wang X D. Biomacromolecules, 2012, 13: 4126.
[128] Santra S, Kaittanis C, Santiesteban O J, Perez J M. J. Am. Chem. Soc., 2011, 133: 16680.
[129] El-Gogary R I, Rubio N, Wang J T W, Al-Jamal W T, Bourgognon M, Kafa H, Naeem M, Klippstein R, Abbate V, Leroux F, Bals S, Tendeloo G V, Kamel A O, Awad G A S, Mortada N D, Al-Jamal K T. ACS Nano, 2014, 8: 1384.
[130] Nair B P, Vaikkath D, Nair P D. Langmuir, 2014, 30: 340.
[131] Mackiewicz N, Nicolas J, Handké N, Noiray M, Mougin J, Daveu C, Lakkireddy H R, Bazile D, Couvreur P. Chem. Mater., 2014, 26: 1834.
[132] Ladmiral V, Semsarilar M, Canton I, Armes S P. J. Am. Chem. Soc., 2013, 135: 13574.
[133] Ding J X, Xiao C S, Li Y, Cheng Y L, Wang N N, He C L, Zhuang X L, Zhu X J, Chen X S. J. Control. Release, 2013, 169: 193.
[134] Jiang X Y, Xin H L, Ren Q Y, Gu J J, Zhu L J, Du F Y, Feng C L, Xie Y K, Sha X Y, Fang X L. Biomaterials, 2014, 35: 518.
[135] Liu Y, Gao F P, Zhang D, Fan Y S, Chen X G, Wang H. J. Control. Release, 2014, 173: 140.
[136] Du C L, Deng D W, Shan L L, Wan S N, Cao J, Tian J M, Achilefu S, Gu Y Q. Biomaterials, 2013, 34: 3087.
[137] Guo X, Shi C L, Wang J, Di S B, Zhou S B. Biomaterials, 2013, 34: 4544.
[138] Yang Z G, Lee J H, Jeon H M, Han J H, Park N, He Y X, Lee H, Hong K S, Kang C, Kim J S. J. Am. Chem. Soc., 2013, 135: 11657.
[139] Zhao F, Yin H, Li J. Biomaterials, 2014, 35: 1050.

[1] 顾顺心, 姜琴, 施鹏飞. 发光铱(Ⅲ)配合物抗肿瘤活性研究及应用[J]. 化学进展, 2022, 34(9): 1957-1971.
[2] 王欣瑜, 赵富平, 张儒, 孙子茹, 刘胜男, 高清志. 抗肿瘤缺氧诱导因子-1的小分子抑制剂[J]. 化学进展, 2021, 33(12): 2259-2269.
[3] 孙子茹, 刘胜男, 高清志. 靶向葡萄糖转运蛋白(GLUTs)抗癌药物的开发[J]. 化学进展, 2020, 32(12): 1869-1878.
[4] 徐子悦, 张运昌, 林佳乐, 王辉, 张丹维, 黎占亭. 药物输送体系构筑中的超分子组装策略[J]. 化学进展, 2019, 31(11): 1540-1549.
[5] 谭晓晓, 李国帅, 王庆鹏, 王炳全, 李大成, 王鹏. 作为抗肿瘤药物的小分子四价铂[J]. 化学进展, 2018, 30(6): 831-846.
[6] 何良, 谭彩萍, 曹乾, 毛宗万. 磷光环金属化铱(Ⅲ)配合物在癌症治疗方面的应用[J]. 化学进展, 2018, 30(10): 1548-1556.
[7] 孙悦文, 金素星, 王晓勇, 郭子建. 金属配合物在肿瘤化学免疫治疗中的应用前景[J]. 化学进展, 2018, 30(10): 1573-1583.
[8] 郑小辉, 夏立新, 毛宗万. 基于核酸修饰新策略的抗肿瘤铂配合物设计[J]. 化学进展, 2016, 28(7): 1029-1038.
[9] 叶霁青, 岳晓虹, 孙丽萍. 小分子IL-6/STAT3信号通路抑制剂[J]. 化学进展, 2016, 28(7): 1099-1111.
[10] 李思迪, 侯信, 亓洪昭, 赵瑾, 原续波. 外泌体:为高效药物投递策略提供天然的内源性纳米载体[J]. 化学进展, 2016, 28(2/3): 353-362.
[11] 王家敏, 史蕾, 刘海洋. 咔咯及其金属配合物与DNA的作用和抗肿瘤活性[J]. 化学进展, 2015, 27(6): 755-762.
[12] 李晓晖*, 黄美玲, 刘丽娜, 王燕云. 环肽类组蛋白去乙酰化酶抑制剂[J]. 化学进展, 2014, 26(09): 1527-1536.
[13] 崔建国, 刘亮, 甘春芳, 肖琦, 黄燕敏. 芳(杂)环甾体化合物的合成及生理活性研究[J]. 化学进展, 2014, 26(0203): 320-333.
[14] 张磊, 刘晓燕, 沈晶晶, 卢晓梅, 范曲立, 黄维. 纳米颗粒在抗癌药物可控靶向释放中的应用[J]. 化学进展, 2013, 25(08): 1375-1382.
[15] 任天斌, 侠文娟, 吴畏, 李永勇*. 刺激响应型聚合物前药[J]. 化学进展, 2013, 25(05): 775-784.
阅读次数
全文


摘要

抗肿瘤药物输送系统