English
新闻公告
More
化学进展 2014, Vol. 26 Issue (08): 1361-1368 DOI: 10.7536/PC140225 前一篇   后一篇

• 综述与评论 •

非共价法分离光学活性单壁碳纳米管

李昱达1, 王迅昶1, 吕仁亮1, 汪锋*1,2   

  1. 1. 武汉工程大学 绿色化工过程教育部重点实验室 武汉 430073;
    2. 武汉工程大学 湖北省新型反应器与绿色化学工艺重点实验室 武汉 430073
  • 收稿日期:2014-02-01 修回日期:2014-04-01 出版日期:2014-08-15 发布日期:2014-06-10
  • 通讯作者: 汪锋 E-mail:psfwang@gmail.com
  • 基金资助:

    国家自然科学基金项目(No.51103111)、教育部新世纪优秀人才支持计划项目(No. NCET-12-0714)和教育部留学回国人员科研启动基金资助

Non-Covalent Separation of Optically Active Single-Walled Carbon Nanotubes

Li Yuda1, Wang Xunchang1, Lv Renliang1, Wang Feng*1,2   

  1. 1. Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430073, China;
    2. Hubei Novel Reactor & Green Chemical Technology Key Laboratory, Wuhan Institute of Technology, Wuhan 430073, China
  • Received:2014-02-01 Revised:2014-04-01 Online:2014-08-15 Published:2014-06-10
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (No. 51103111), the Program for New Century Excellent Talents in University (No. NCET-12-0714) and the Scientific Research Starting Foundation for the Returned Overseas Chinese Scholars, Ministry of Education, China

单壁碳纳米管(SWNTs)由于具有独特的物理、化学性质,激起人们极大的研究兴趣。目前生产的SWNTs通常包含等量左旋和右旋对映异构体,无光学活性,极大地限制碳纳米管在光学和光电子领域的研究和应用。已报道的非共价法分离光学活性碳纳米管的方法主要有离子交换色谱法、nanotweezers选择法、密度梯度超高速离心法、共轭聚合物缠绕法和小分子吸附法。本文较为详尽地综述了非共价法分离光学活性碳纳米管的研究进展,对各种分离方法的机理进行阐述,并在此基础上分析这些方法和分离效果的关系,指导设计和合成新型的分离试剂。最后,本文还针对上述研究中存在的问题,提出了旋光性SWNTs分离技术的研究方向。

Single-walled carbon nanotubes (SWNTs) have been attracting extensive interest because of their novel and unique chemical and physical properties. However, the present technologies for SWNTs synthesis always produce samples with both enantiomers in equal amounts. Since the optically active properties of SWNTs are closely correlated to their helical structures, structural control of SWNTs is very important for their potential applications in photonics and photoelectronics. A wide variety of methods have been devised so far for the non-covalent separation of SWNTs according to their left-and right-handed structure. In this paper, they are classified into the following five sections according to the separation methods: ion exchange chromatography, nanotweezers selective extraction, density-gradient ultracentrifugation (DGU), conjugated polymers wrapping and small molecules adsorption. We reviewed the recent advances in this research field, including the separation mechanisms. The relationship between these methods and the results of the optical and (n,m) enhancements of the extracted SWNTs is analyzed, and it may be useful for designing the novel host molecules to obtain single structure SWNTs in view of practical applications. At last, the existing problems and the direction of development of the regarding studies are pointed out.

Contents
1 Introduction
2 Helical structures of SWNTs
3 Non-covalent methods to separate chiral SWNTs
3.1 Ion exchange chromatography
3.2 Nanotweezers selective extraction
3.3 Density-gradient ultracentrifugation
3.4 Conjugated polymers wrapping
3.5 Small molecules adsorption
4 Conclusion and outlook

中图分类号: 

()

[1] Iijima S, Ichihashi T. Nature, 1993, 363: 603.
[2] Bethune D S, Klang C H, de Vries M S, Gorman G, Savoy R, Vazquez J, Beyers R. Nature, 1993, 363: 605.
[3] Baughman R H, Zakhidov A A, de Heer W A. Science, 2002, 297: 787.
[4] Tans S J, Devoret M H, Dai H, Thess A, Smalley R E, Geerligs L J, Dekker C. Nature, 1997, 386: 474.
[5] Cress C. Electronics, 2014, 3: 22.
[6] Javey A, Guo J, Farmer D B, Wang Q, Yenilmez E, Gordon R G, Lundstrom M, Dai H. Nano Lett., 2004, 4: 1319.
[7] Rosenblatt S, Yaish Y, Park J, Gore J, Sazonova V, McEuen P L. Nano Lett., 2002, 2: 869.
[8] Tans S J, Verschueren A R M, Dekker C. Nature, 1998, 393: 49.
[9] Zhu H, Wei J, Wang K, Wu D. Sol. Energ. Mater. Sol. C, 2009, 93: 1461.
[10] Sanchez-Castillo A, Roman-Velazquez C E, Noguez C. Phys. Rev. B, 2006, 73: 045401.
[11] Sanchez-Castillo A, Noguez C. J. Phys. Chem. C, 2010, 114: 9640.
[12] Harutyunyan A R, Chen G, Paronyan T M, Pigos E M, Kuznetsov O A, Hewaparakrama K, Kim S M, Zakharov D, Stach E A, Sumanasekera G U. Science, 2009, 326: 116.
[13] Hong G, Zhang B, Peng B, Zhang J, Choi W M, Choi J Y, Kim J M, Liu Z. J. Am. Chem. Soc., 2009, 131: 14642.
[14] Huang S, Cai Q, Chen J, Qian Y, Zhang L. J. Am. Chem. Soc., 2009, 131: 2094.
[15] Li P, Zhang J. J. Mater. Chem., 2011, 21: 11815.
[16] 李盼(Li P), 张锦(Zhang J). 化学进展(Progress in Chemistry), 2013, 25(2/3): 167.
[17] Wang Y, Liu Y, Li X, Cao L, Wei D, Zhang H, Shi D, Yu G, Kajiura H, Li Y. Small, 2007, 3: 1486.
[18] Wen Q, Qian W, Wei F, Liu Y, Ning G, Zhang Q. Chem. Mater., 2007, 19: 1226.
[19] Yao Y, Li Q, Zhang J, Liu R, Jiao L, Zhu Y T, Liu Z. Nat. Mater., 2007, 6: 283.
[20] Zhao M Q, Tian G L, Zhang Q, Huang J Q, Nie J Q, Wei F. Nanoscale, 2012, 4: 2470.
[21] Zheng L X, O'Connell M J, Doorn S K, Liao X Z, Zhao Y H, Akhadov E A, Hoffbauer M A, Roop B J, Jia Q X, Dye R C, Peterson D E, Huang S M, Liu J, Zhu Y T. Nat. Mater., 2004, 3: 673.
[22] Chen Y B, Shen Z Y, Xu Z W, Hu Y, Xu H T, Wang S, Guo X L, Zhang Y F, Peng L M, Ding F, Liu Z F, Zhang J. Nat. Commun., 2013, 4: 2205.
[23] Campidelli S, Meneghetti M, Prato M. Small, 2007, 3: 1672.
[24] Hersam M C. Nat. Nanotechnol., 2008, 3: 387.
[25] Komatsu N, Wang F. Materials, 2010, 3: 3818.
[26] Krupke R, Hennrich F. Adv. Engine. Mater., 2005, 7: 111.
[27] Liu C H, Zhang H L. Nanoscale, 2010, 2: 1901.
[28] Papadimitrakopoulos F, Ju S Y. Nature, 2007, 450: 486.
[29] Rao C, Voggu R, Govindaraj A. Nanoscale, 2009, 1: 96.
[30] 蔡瑛(Cai Y), 严志宏(Yan Z H), 字敏(Zi M), 丁惠(Ding H), 袁黎明(Yuan L M). 化学进展(Progress in Chemistry), 2008, 20(9): 1391.
[31] 李红波(Li H B), 张静(Zhang J), 金赫华(Jin H H), 李清文(Li Q W). 物理化学学报(Acta Physico-Chimica Sinica), 2012, 28(10): 2447.
[32] 林高锋(Lin G F), 孟令杰(Meng L J), 张晓科(Zhang X K), 路庆华(Lu Q H). 化学进展(Progress in Chemistry), 2010, 22(2/3): 331.
[33] 王国建(Wang G J), 屈泽华(Qu Z H). 化学进展(Progress in Chemistry), 2006, 18(10): 1305.
[34] Niyogi S, Hamon M, Hu H, Zhao B, Bhowmik P, Sen R, Itkis M, Haddon R. Acc. Chem. Res., 2002, 35: 1105.
[35] Tasis D, Tagmatarchis N, Bianco A, Prato M. Chem. Rev., 2006, 106: 1105.
[36] Banerjee S, Wong S S. J. Am. Chem. Soc., 2004, 126: 2073.
[37] Nair N, Kim W J, Usrey M L, Strano M S. J. Am. Chem. Soc., 2007, 129: 3946.
[38] Zhang H, Liu Y, Cao L, Wei D, Wang Y, Kajiura H, Li Y, Noda K, Luo G, Wang L, Zhou J, Lu J, Gao Z. Adv. Mater., 2009, 21: 813.
[39] Collins P G, Arnold M S, Avouris P. Science, 2001, 292: 706.
[40] Antaris A L, Seo J W T, Green A A, Hersam M C. ACS Nano, 2010, 4: 4725.
[41] Arnold M S, Green A A, Hulvat J F, Stupp S I, Hersam M C. Nat. Nanotechnol., 2006, 1: 60.
[42] Lemasson F, Berton N, Tittmann J, Hennrich F, Kappes M M, Mayor M. Macromolecules, 2011, 45: 713.
[43] Li Y, Rahman A, Liu G, Xiong Z, Koezuka K, Xu Z, Komatsu N, Wang F. Materials, 2013, 6: 3064.
[44] Nish A, Hwang J Y, Doig J, Nicholas R J. Nat. Nanotechnol., 2007, 2: 640.
[45] Sturzl N, Hennrich F, Lebedkin S, Kappes M M. J. Phys. Chem. C, 2009, 113: 14628.
[46] Tanaka T, Jin H, Miyata Y, Fujii S, Suga H, Naitoh Y, Minari T, Miyadera T, Tsukagoshi K, Kataura H. Nano Lett., 2009, 9: 1497.
[47] Tu X, Manohar S, Jagota A, Zheng M. Nature, 2009, 460: 250.
[48] Wang F, Matsuda K, Rahman A M, Kimura T, Komatsu N. Nanoscale, 2011, 3: 4117.
[49] Rahman A F M M, Wang F, Matsuda K, Kimura T, Komatsu N. Chem. Sci., 2011, 2: 862.
[50] Liu G, Rahman A F M M, Chaunchaiyakul S, Kimura T, Kuwahara Y, Komatsu N. Chem. Eur. J., 2013, 19: 16221.
[51] Maeda Y, Kimura S, Kanda M, Hirashima Y, Hasegawa T, Wakahara T, Lian Y, Nakahodo T, Tsuchiya T, Akasaka T. J. Am. Chem. Soc., 2005, 127: 10287.
[52] Dukovic G, Balaz M, Doak P, Berova N D, Zheng M, McLean R S, Brus L E. J. Am. Chem. Soc., 2006, 128: 9004.
[53] Peng X, Wang F, Bauri A K, Rahman A, Komatsu N. Chem. Lett., 2010, 39: 1022.
[54] Peng X, Komatsu N, Bhattacharya S, Shimawaki T, Aonuma S, Kimura T, Osuka A. Nat. Nanotechnol., 2007, 2: 361.
[55] Peng X, Komatsu N, Kimura T, Osuka A. J. Am. Chem. Soc., 2007, 129: 15947.
[56] Peng X, Komatsu N, Kimura T, Osuka A. ACS Nano, 2008, 2: 2045.
[57] Wang F, Matsuda K, Rahman A F M M, Peng X, Kimura T, Komatsu N. J. Am. Chem. Soc., 2010, 132: 10876.
[58] Liu G, Wang F, Chaunchaiyakul S, Saito Y, Bauri A K, Kimura T, Kuwahara Y, Komatsu N. J. Am. Chem. Soc., 2013, 135: 4805.
[59] Green A, Duch M, Hersam M. Nano Res., 2009, 2: 69.
[60] Marquis R, Kulikiewicz K, Lebedkin S, Kappes M M, Mioskowski C, Meunier S, Wagner A. Chem. Eur. J., 2009, 15: 11187.
[61] Ghosh S, Bachilo S M, Weisman R B. Nat. Nanotechnol., 2010, 5: 443.
[62] Ghosh S, Bachilo S M, Weisman R B. Fullerenes, Nanotubes and Carbon Nanostructures, 2013, 22: 269.
[63] Green A A, Hersam M C. Adv. Mater., 2011, 23: 2185.
[64] Deria P, von Bargen C D, Olivier J H, Kumbhar A S, Saven J G, Therien M J. J. Am. Chem. Soc., 2013, 135: 16220.
[65] Akazaki K, Toshimitsu F, Ozawa H, Fujigaya T, Nakashima N. J. Am. Chem. Soc., 2012, 134: 12700.
[66] Peng X, Wang F, Kimura T, Komatsu N, Osuka A. J. Phys. Chem. C, 2009, 113: 9108.
[67] Ju S Y, Abanulo D C, Badalucco C A, Gascón J A, Papadimitrakopoulos F. J. Am. Chem. Soc., 2012, 134: 13196.

[1] 龚德君, 高冠斌, 张明曦, 孙涛垒. 手性金团簇的制备、性质及应用[J]. 化学进展, 2016, 28(2/3): 296-307.
[2] 李盼, 张锦*. 单壁碳纳米管的结构控制生长方法[J]. 化学进展, 2013, 25(0203): 167-178.
[3] 王金业, 宋晨, 徐景坤, 丁宝全. 利用DNA折纸术构建功能纳米材料[J]. 化学进展, 2012, (10): 1936-1945.
[4] 林高锋 孟令杰 张晓科 路庆华. 非共价方法分离金属型和半导体型单壁碳纳米管[J]. 化学进展, 2010, 22(0203): 331-337.
[5] 张文虎,蔡,燕,刘,湘,方,云,许建和. 芳香酮的不对称还原*[J]. 化学进展, 2007, 19(10): 1537-1553.
[6] 王鹏,马金石. 胆色素类化合物光学活性及其立体化学研究进展*[J]. 化学进展, 2000, 12(04): 391-.