English
新闻公告
More
化学进展 2014, Vol. 26 Issue (08): 1369-1377 DOI: 10.7536/PC140336 前一篇   后一篇

• 综述与评论 •

基于叶立德同源聚合的聚烯烃功能化研究

荣雷1,2, 宁英男1, 高金苹1,2, 毛国梁1, 马志*2   

  1. 1. 东北石油大学化学化工学院 大庆 163318;
    2. 中国科学院上海有机化学研究所 上海 200032
  • 收稿日期:2014-03-01 修回日期:2014-04-01 出版日期:2014-08-15 发布日期:2014-06-10
  • 通讯作者: 马志 E-mail:mazhi728@sioc.ac.cn
  • 基金资助:

    国家自然科学基金项目(No. 21074146,21374130)资助

Functionalization of Polyolefin Based on Polyhomologation of Ylide

Rong Lei1,2, Ning Yingnan1, Gao Jinping1,2, Mao Guoliang1, Ma Zhi*2   

  1. 1. School of Chemistry and Chemical Engineering, Northeastern Petroleum University, Daqing 163318, China;
    2. Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
  • Received:2014-03-01 Revised:2014-04-01 Online:2014-08-15 Published:2014-06-10
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 21074146, 21374130)

近年来,新的合成方法的发现以及多种活性聚合组合策略的运用,已成为聚烯烃功能化领域的研究热点。本文首先对构筑聚烯烃分子链骨架的一种新合成方法——叶立德同源聚合的反应机理、单体及其研究现状进行了简要的介绍,然后详细评述了叶立德同源聚合分别与活性阴离子聚合、原子转移自由基聚合、可逆加成-断裂链转移聚合以及开环聚合相结合,设计、合成功能化聚烯烃共聚物的研究新进展。最后,对基于叶立德同源聚合设计、合成功能化聚烯烃共聚物的研究前景与实际应用进行了展望。

In recent years, the discovery of new synthetic methodology and the application of combined strategy based on living polymerizations have become a hot topic of current researches in the functionalization of polyolefin field. Firstly, the research on mechanism, monomers and current research status of the polyhomologation of ylide which is a new synthetic methodology of constructing skeleton of molecular chain, are briefly introduced. In addition, new research progress of the design and synthesis of functionalized polyolefin copolymer by combining polyhomologation of ylide with living anionic polymerization, atom transfer radical polymerization, reversible addition-fragmentation chain transfer polymerization and ring opening polymerization, are reviewed in detail respectively. Finally, research foreground and practical application of the design and synthesis of functionalized polyolefin copolymer based on polyhomologation of ylide are also prospected.

Contents
1 Introduction
2 Polyhomologation of ylide
2.1 Mechanism of the polyhomologation of ylide
2.2 Monomers of the polyhomologation of ylide
2.3 Current research status of the polyhomologation of ylide
3 Combining with other methodologies to functionalize polyolefin
3.1 Combining with living anionic polymerization
3.2 Combining with atom transfer radical polymerization
3.3 Combining with reversible addition-fragmentation chain transfer polymerization
3.4 Combining with ring opening polymerization
4 Conclusion and outlook

中图分类号: 

()

[1] 洪定一(Hong D Y). 塑料工业手册(聚烯烃)(Handbook of Plastic Industry/Polyolefins). 北京: 化学工业出版社(Beijing: Chemical Industry Press), 1999. 296.
[2] Vasile C. Handbook of Polyolefins, Second Edition, Revised and Expanded, New York: Marcel Dekker, 2000. 249.
[3] Chung T C. Prog. Polym. Sci., 2002, 27: 39.
[4] 胡友良(Hu Y L), 乔金梁(Qiao J L), 吕立新(Lv L X). 聚烯烃功能化及改性-科学与技术(Functionalization and Modification of Polyolefins-Science and Technology). 北京: 化学工业出版社(Beijing: Chemical Industry Press), 2006. 68.
[5] 陈健壮(Chen J Z), 崔崑(Cui K), 张淑媛(Zhang S Y), 马志(Ma Z). 化学进展(Progress in Chemistry), 2008, 20: 1740.
[6] 赵烨(Zhao Y), 高海洋(Gao H Y), 张玲(Zhang L),伍青(Wu Q). 高分子通报(Polymer Bulletin), 2009, 7: 27.
[7] 张勇杰(Zhang Y L), 李化毅(Li H Y), 董金勇(Dong J Y), 胡友良(Hu Y L). 化学进展(Progress in Chemistry), 2014, 26: 110.
[8] 毛国梁(Mao G L), 王欣(Wang X), 宁英男(Ning Y N), 马志(Ma Z). 化工进展(Chemical Industry and Engineering Progress), 2012, 31: 2282.
[9] 吕会朝(Lv H C), 徐慎刚(Xu S G), 赵巧玲(Zhao Q L), 黄晋(Huang J), 曹少魁(Cao S K), 马志(Ma Z). 化学学报(Acta Chimica Sinica), 2011, 69: 1126.
[10] Shea K J, Walker J W, Zhu H, Paz M. J. Am. Chem. Soc., 1997, 119: 9049.
[11] Shea K J. Chem. Eur. J., 2000, 6: 1113.
[12] Zhou X Z, Shea K J. Macromolecules, 2001, 34: 3111.
[13] Busch B B, Staiger C L, Stoddard J M, Shea K J. Macromolecules, 2002, 35: 8330.
[14] Busch B B, Paz M M, Shea K J, Staiger C L. J. Am. Chem. Soc., 2002, 124: 3636.
[15] Wagner C E, Kim J S, Shea K J. J. Am. Chem. Soc., 2003, 125: 12179.
[16] Wagner C E, Rodriguez A A, Shea K J. Macromolecules, 2005, 38: 7286.
[17] Luo J, Shea K J. Acc. Chem. Res., 2010, 43: 1420.
[18] Jellema E, Jongerius A L, Reek J N H, Bruin B D. Chem. Soc. Rev., 2010, 39: 1706.
[19] Zhou X Z, Shea K J. J. Am. Chem. Soc., 2000, 122: 11515.
[20] Sulc R, Zhou X Z, Shea K J. Macromolecules, 2006, 39: 4948.
[21] Bai J, Shea K J. Macromol. Rapid Commun., 2006, 27: 1223.
[22] Goddard J P, Lixon P, Le Gall T, Mioskowski C. J. Am. Chem. Soc., 2003, 125: 9242.
[23] Mondière R, Goddard J P, Carrot G, Le Gall T, Mioskowski C. Macromolecules, 2005, 38: 663.
[24] Mondière R, Goddard J P, Huiban M, Carrot G, Le Gall T, Mioskowski C. Chem. Commun., 2006, 723.
[25] Wagner C E, Shea K J. Org. Lett., 2001, 3: 3063.
[26] Wagner C E, Kim J S, Shea K J. J. Am. Chem. Soc. 2003, 125: 12179.
[27] Shea K J, Staiger C L, Lee S Y. Macromolecules, 1999, 32: 3157.
[28] Wang J D, Horton H J, Liu G J, Lee S Y, Shea K J. Polymer, 2007, 48: 4123.
[29] Luo J, Lu F F, Shea K J. Macro. Lett., 2012, 1: 560.
[30] Szwarc M. Nature, 1956, 178: 1168.
[31] Szwarc M, Levy M, Milkovich R. J. Am. Chem. Soc., 1956, 78: 2656.
[32] Baskarana D, Müller A H E. Prog. Polym. Sci., 2007, 32: 173.
[33] Kumar S, Shah P N, Kang B G, Min J K, Hwang W S, Sung I K, Shah S R, Murthy C N, Ahn S, Chang T, Lee J S. J. Polym. Sci., Part A: Polym. Chem., 2010, 48: 2636.
[34] Matsuo Y, Konno R, Ishizone T, Goseki R, Hirao A. Polymers, 2013, 5: 1012.
[35] Ito S, Goseki R, Ishizone T, Senda S, Hirao A. Macromolecules, 2013, 46: 819.
[36] Goseki R, Ozama Y, Akemine E, Ito S, Ehara S, Hirao A. Polymer, 2013, 54: 2049.
[37] Hirao A, Watanabe T, Kurokawa R. Macromolecules, 2009, 42: 3973.
[38] Tang T T, Huang J, Huang B, Huang J L, Wang G W. J. Polym. Sci., Part A: Polym. Chem., 2012, 50: 5144.
[39] Quirk R P, Wang S F, Foster M D. Macromolecules, 2011, 44: 7538.
[40] Zhang H F, Alkayal N, Gnanoub Y, Hadjichristidis N. Chem. Commun., 2013, 49: 8952.
[41] Matyjaszewski K, Xia J. Chem. Rev., 2001, 101: 2921.
[42] Pintauer T, Matyjaszewski K. Chem. Soc. Rev., 2008, 37: 1087.
[43] Konkolewicz D, Wang Y, Zhong M J, Krys P, Isse A A, Gennaro A, Matyjaszewski K. Macromolecules, 2013, 46: 8749.
[44] Abreu C M R, Serra A C, Popov A V, Matyjaszewski K, Guliashvili T, Coelho J F J. Polym. Chem., 2013, 4: 5629.
[45] Chen J Z, Zhao Q L, Lu H C, Huang J, Cao S K, Ma Z. J. Polym. Sci., Part A: Polym. Chem., 2010, 48: 1894.
[46] Lu H C, Xue Y, Zhao Q L, Huang J, Xu S G, Cao S K, Ma, Z. J. Polym. Sci., Part A: Polym. Chem., 2012, 50: 3641.
[47] Xue Y, Lu H C, Zhao Q L, Huang J, Xu S G, Cao S K, Ma Z. Polym. Chem., 2013, 4: 307.
[48] Chiefari J, Chong Y K, Ercole F, Krstina J, Jeffery J, Le T P T, Mayadunne R T A, Meijs G F, Moad C L, Moad G, Rizzardo E, Thang S H. Macromolecules, 1998, 31: 5559.
[49] Smith A E, Xu X W, McCormick C L. Prog. Polym. Sci., 2010, 35: 45.
[50] Keddie D J, Moad G, Rizzardo E, Thang S H. Macromolecules, 2012, 45: 5321.
[51] O’Donnell J M. Chem. Soc. Rev., 2012, 41: 3061.
[52] Cheng F, Bonder E M, Jäkle F. J. Am. Chem. Soc., 2013, 135: 17286.
[53] Dou H Q, Zhang X M, Shen W, Zhu J, Zhang Z B, Zhu X L. J. Polym. Sci., Part A: Polym. Chem., 2013, 51: 2125.
[54] Pafiti K S, Patrickios C S, Abetz C, Abetz V. J. Polym. Sci., Part A: Polym. Chem., 2013, 51: 4957.
[55] Wang X, Gao J P, Zhao Q L, Huang J, Mao G L, Wu W, Ning Y N, Ma Z. J. Polym. Sci., Part A: Polym. Chem., 2013, 51: 2892.
[56] 李启蒸(Li Q Z), 张国艺(Zhang G Y), 袁聪(Yuan C), 魏柳荷(Wei L H), 马志(Ma Z). 化学进展(Progress in Chemistry), 2011, 23: 1174.
[57] Lu Y Y, Hu Y L, Chung T C. Polymer, 2005, 46: 10585.
[58] Liu J, Pan C Y. Polymer, 2005, 46: 11133.
[59] Zhu M Q, Xiang L, Yang K, Shen L J, Long F, Fan J B, Yi H Q, Xiang J, Aldred M P. J. Polym. Res., 2012, 19: 9808.
[60] Demirelli K, Bezgin F O. J. Polym. Chem., 2012, 2: 42.
[61] 李启蒸(Li Q Z), 张国艺(Zhang G Y), 黄晋(Huang J), 赵巧玲(Zhao Q L), 魏柳荷(Wei L H), 何占航(He Z H), 马志(Ma Z). 化学学报(Acta Chimica Sinica), 2011, 69: 497.
[62] Yuan C, Lu H C, Li Q Z, Yang S, Zhao Q L, Huang J, Wei L H, Ma Z. J. Polym. Sci., Part A: Polym. Chem., 2012, 50: 2398.

[1] 张浩, 许芳, 王合营, 姜涛, 马志. 基于聚亚甲基的新型共聚物的可控合成[J]. 化学进展, 2018, 30(2/3): 179-189.
[2] 张勇杰, 李化毅, 董金勇, 胡友良. 端基功能化聚烯烃的合成与应用[J]. 化学进展, 2014, 26(01): 110-124.
[3] 李启蒸, 张国艺, 袁聪, 魏柳荷, 马志. 聚烯烃/聚酯(聚醚)共聚物的合成及其应用[J]. 化学进展, 2011, 23(6): 1174-1180.
[4] 刘虎,王文浩,胡晓熙,彭慧,易昌凤,徐祖顺. 乳液原子转移自由基聚合*[J]. 化学进展, 2009, 21(6): 1292-1298.
[5] 闫强,隋晓锋,袁金颖. 活性聚合在星形聚合物合成中的应用*[J]. 化学进展, 2008, 20(10): 1562-1571.
[6] 赵群,倪沛红. pH/温度响应的两亲性嵌段共聚物的研究*[J]. 化学进展, 2006, 18(06): 768-779.
[7] 易玲敏,詹晓力,陈丰秋. (甲基)丙烯酸氟烷基酯的“活性”/可控聚合*[J]. 化学进展, 2004, 16(06): 954-.
[8] 孟诗云,李光宪,杨其,黄亚江. 用于光致抗蚀剂的聚对羟基苯乙烯的合成及其进展[J]. 化学进展, 2004, 16(02): 243-.