English
新闻公告
More
化学进展 DOI: 10.7536/PC120758 前一篇   后一篇

• 特约稿 •

单壁碳纳米管的结构控制生长方法

李盼, 张锦*   

  1. 北京大学纳米化学研究中心 北京大学化学与分子工程学院 北京100871
  • 收稿日期:2012-07-01 修回日期:2012-10-01 出版日期:2013-02-24 发布日期:2012-12-28
  • 通讯作者: 张锦 E-mail:jinzhang@pku.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.50972001,51121091)和国家重大科学研究计划项目(No.2011CB932601)资助

Structure Controlled Growth of Single-Walled Carbon Nanotubes

Li Pan, Zhang Jin*   

  1. Center for Nanochemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
  • Received:2012-07-01 Revised:2012-10-01 Online:2013-02-24 Published:2012-12-28

单壁碳纳米管在原子尺度的结构变化即可导致其电学、光学方面等性质的多样性和非连续的变化——如电学性质上可呈现半导体性或金属性。然而,在单壁碳纳米管表现出诸多优异性能的同时,如何实现碳纳米管的结构控制制备仍面临严峻的挑战。本文以单壁碳纳米管的管径、导电属性和手性控制为目标,介绍单壁碳纳米管的结构控制生长方法,主要包括温度扰动法、金属催化剂结构设计法、生长气氛调控法、外场辅助法、基底诱导法、非金属粒子催化法和sp2碳结构模板法等。并在此基础上总结了单壁碳纳米管结构控制生长的基本思路及实现途径,以期为后续单壁碳纳米管的规模化应用奠定基础。

Single-walled carbon nanotubes (SWNTs) have been regarded as one of the promising candidates for further applications in nanoelectronic devices,including field-effect transistor, transparent film and chemical sensor. However, as device performance urges many challenging requirements on the material synthesis, researchers have been aggressively seeking the potential strategies for preparing samples of SWNTs with well-defined structures (geometry, location, diameter, length, wall number, metallic/semiconducting and chirality) on surfaces. Herein, this review highlights in situ approaches towards selective growth of mono-disperse SWNT samples——including temperature mediated method, catalyst structure engineering, gas ambient tuning, external field assisted chemical vapor deposition (CVD) method, surface atomic arrangement induction method, nonmetal catalyzing and sp2 carbon nano-structure templated growth to get SWNTs samples with controlled diameters, chiralities and electronic properties (metallic or semiconducting) and special morphology. The majority of the growth methods covered here are CVD growth carried on the substrates, for its capacity of growing high-purity,well arranged and aligned samples. Based on the understanding of the growth mechanism of those strategies, we try to propose the general guideline on that how can we develop the optimal solution for controlled growth of SWNTs. It is expected that SWNTs samples with controlled structures will see ubiquitous applications in future nano-electronic devices.   Contents
1 Introduction
2 Temperature-mediated growth of carbon nanotubes
3 Metal catalyst structure engineering method
4 Gas ambient tuning method
5 External field assisted CVD method
5.1 Plasmon enhanced CVD method
5.2 Electric field-assisted CVD method
5.3 UV-assisted CVD method
6 Substrate induction method
7 Nonmetal catalyzing method
8 sp2 carbon nano-structure templated growth method
9 Conclusions and outlook

中图分类号: 

()

[1] Iijima S, Ichihashi T. Nature, 1993, 363: 603-605
[2] Iijima S. Nature, 1991, 354: 56-58
[3] Jones D E H. Nature, 1996, 381: 384-384
[4] Dresselhaus M S, Dresselhaus G, Saito R, Jorio A. Phys. Rep., 2005, 409: 47-99
[5] Saito R, Fujita M, Dresselhaus G, Dresselhaus M S. Appl. Phys. Lett., 1992, 60: 2204-2206
[6] Ding L, Zhang Z, Liang S, Pei T, Wang S, Li Y, Zhou W, Liu J, Peng L M. Nat. Commun., 2012, 3: 677-683
[7] Wu Z, Chen Z, Du X, Logan J M, Sippel J, Nikolou M, Kamaras K, Reynolds J R, Tanner D B, Hebard A F. Science, 2004, 305: 1273-1276
[8] Service R F. Science, 1995, 270: 1119-1119
[9] Avouris P, Freitag M, Perebeinos V. Nat. Photonics, 2008, 2: 341-350
[10] Wong H S P, Akinwande D. Carbon Nanotube and Graphene Device Physics. New York: Cambridge Univ. Pr., 2010
[11] Ajayan P M, Tour J M. Nature, 2007, 447: 1066-1068
[12] Yang L, Wang S, Zeng Q, Zhang Z, Pei T, Li Y, Peng L M. Nat. Photonics, 2011, 5: 672-676
[13] Harris P J F. Carbon Nanotube Science: Synthesis, Properties and Applications. Cambridge: Cambridge University Press & Science Press, 2009
[14] Odom T W, Huang J L, Kim P, Lieber C M. Nature, 1998, 391: 62-64
[15] Chen Z, Appenzeller J, Knoch J, Lin Y, Avouris P. Nano Lett., 2005, 5: 1497-1502
[16] Kim W, Javey A, Tu R, Cao J, Wang Q, Dai H J. Appl. Phys. Lett., 2005, 87: art. no. 173101
[17] Wagner R S, Ellis W C. Appl. Phys. Lett., 1964, 4: 89-90
[18] Gavillet J, Loiseau A, Journet C, Willaime F, Ducastelle F, Charlier J C. Phys. Rev. Lett., 2001, 87: art. no. 275504
[19] Yuan D, Ding L, Chu H, Feng Y, McNicholas T P, Liu J. Nano Lett., 2008, 8: 2576-2579
[20] Homma Y, Liu H P, Takagi D, Kobayashi Y. Nano Res., 2009, 2: 793-799
[21] Takagi D, Homma Y, Hibino H, Suzuki S, Kobayashi Y. Nano Lett., 2006, 6: 2642-2645
[22] Liu H, Takagi D, Chiashi S, Chokan T, Homma Y. J. Nanosci. Nanotechnol., 2010, 10: 4068-4073
[23] Liu B L, Ren W C, Gao L, Li S, Pei S, Liu C, Jiang C, Cheng H M. J. Am. Chem. Soc., 2009, 131: 2082-2083
[24] Huang S, Cai Q, Chen J, Qian Y, Zhang L. J. Am. Chem. Soc., 2009, 131: 2094-2095
[25] Liu B L, Ren W C, Liu C, Sun C H, Gao L B, Li S S, Jiang C B, Cheng H M. ACS Nano, 2009, 3: 3421-3430
[26] Takagi D, Kobayashi Y, Hommam Y. J. Am. Chem. Soc., 2009, 131: 6922-6923
[27] Okamoto H, Massalski T. J. Phase Equilib., 1984, 5: 378-379
[28] Page A J, Ohta Y, Irle S, Morokuma K. Accounts Chem. Res., 2010, 43: 1375-1385
[29] Bandow S, Asaka S, Saito Y, Rao A M, Grigorian L, Richter E, Eklund P C. Phys. Rev. Lett., 1998, 80: 3799-3782
[30] Yao Y, Li Q, Zhang J, Liu R, Jiao L, Zhu Y T, Liu Z. Nat. Mater., 2007, 6: 283-286
[31] Kanzow H, Ding A. Phys. Rev. B, 1999, 60: 11180-11186
[32] Rao R, Liptak D, Cherukuri T, Yakobson B I, Maruyama B. Nat. Mater., 2012, 11: 213-216
[33] Hamblin S E, Finch C K, Hurdle A C, Broyles J E, Deaton P R, Boswell R, Nuckolls J, Wan J Y. Crit. Care Med., 2008, 36: A108-A108
[34] Yazyev O V, Pasquarello A. Phys. Rev. Lett., 2008, 100: art. no. 156102
[35] Ding F, Larsson P, Larsson J A, Ahuja R, Duan H M, Rosen A, Bolton K. Nano Lett., 2008, 8: 463-468
[36] Li Y M, Kim W, Zhang Y G, Rolandi M, Wang D W, Dai H J. J. Phys. Chem. B, 2001, 105: 11424-11431
[37] Durrer L, Greenwald J, Helbling T, Muoth M, Riek R, Hierold C. Nanotechnology, 2009, 20: art. no. 355601
[38] Jeong G H, Yamazaki A, Suzuki S, Yoshimura H, Kobayashi Y, HommaY. Carbon, 2007, 45: 978-983
[39] Jennifer Q, Lu D A R, Emanuel O, Wang H, Mitchell A W, Manners I, Cheng Q, Fu Q, Liu J. Langmuir, 2006, 22: 5174-5179
[40] Li X L, Tu X M, Zaric S, Welsher K, Seo W S, Zhao W, Dai H J. J. Am. Chem. Soc., 2007, 129: 15770-15771
[41] He M, Chernov A I, Fedotov P V, Obraztsova E D, Sainio J, Rikkinen E, Jiang H, Zhu Z, Tian Y, Kauppinen E I, Niemela M, Krauset A O I. J. Am. Chem. Soc., 2010, 132: 13994-13996
[42] Joo S H, Park J Y, Tsung C K, Yamada Y, Yang P D, Somorjai G A. Nat. Mater., 2009, 8: 126-131
[43] Bachilo S M, Balzano L, Herrera J E, Pompeo F, Resasco D E, Weisman R B. J. Am. Chem. Soc., 2003, 125: 11186-11187
[44] Cao A, Veser G. Nat. Mater., 2010, 9: 75-81
[45] Kanzow H, Lenski C, Ding A. Phys. Rev. B, 2001, 63: art. no. 125402
[46] Gomez-Gualdron D A, Balbuena P B. J. Phys. Chem. C, 2009, 113: 698-709
[47] Reich S, Li L, Robertson J. Chem. Phys. Lett., 2006, 421: 469-472
[48] Chiang W H, Sankaran R M. Nat. Mater., 2009, 8: 882-886
[49] Harutyunyan A R, Chen G G, Paronyan T M, Pigos E M, Kuznetsov O A, Hewaparakrama K, Kim S M, Zakharov D, Stach E A, Sumanasekera G U. Science, 2009, 326: 116-120
[50] Yamada T, Maigne A, Yudasaka M, Mizuno K, Futaba D N, Yumura M, Iijima S, Hata K. Nano Lett., 2008, 8: 4288-4292
[51] Wen Q, Zhang R F, Qian W Z, Wang Y R, Tan P H, Nie J Q, Wei F. Chem. Mater., 2010, 22: 1294-1296
[52] Zheng L X, Connell M J, Doorn S K, Liao X Z, Zhao Y H, Akhadov E A, Hoffbauer M A, Roop B J, Jia Q X, Dye R C, Peterson D E, Huang S M, Liu J, Zhu Y T. Nat. Mater., 2004, 3: 673-676
[53] Lu C G, Liu J. J. Phys. Chem., 2006, 110: art. no. 20254
[54] Wang B, Poa C H P, Wei L, Li L J, Yang Y, Chen Y. J. Am. Chem. Soc., 2007, 129: 9014-9019
[55] Strano M S, Dyke C A, Usrey M L, Barone P W, Allen M J, Shan H W, Kittrell C, Hauge R H, Tour J M, Smalley R E. Science, 2003, 301: 1519-1522
[56] Ding L, Tselev A, Wang J Y, Yuan D N, Chu H B, McNicholas T P, Li Y, Liu J. Nano Lett., 2009, 9: 800-805
[57] Wang Y, Liu Y Q, Li X L, Cao L C, Wei D C, Zhang H L, Shi D C, Yu G, Kajiura H, Li Y M. Small, 2007, 3: 1486-1490
[58] Yu B, Liu C, Hou P X, Tian Y, Li S S, Liu B L, Li F, Kauppinen E I, Cheng H M. J. Am. Chem. Soc., 2011, 133: 5232-5235
[59] Hata K, Futaba D N, Mizuno K, Namai T, Yumura M, Iijima S. Science, 2004, 306: 1362-1364
[60] Li P, Zhang J. J. Mater. Chem., 2011, 21: 11815-11821
[61] Zhu Z, Jiang H, Susi T, Nasibulin A G, Kauppinen E I. J. Am. Chem. Soc., 2011, 133: 1224-1227
[62] Li Y M, Mann D, Rolandi M, Kim W, Ural A, Hung S, Javey A, Cao J, Wang D W, Yenilmez E, Wang Q, Gibbons J F, Nishi Y, Dai H J. Nano Lett., 2004, 4: 317-321
[63] Li Y M, Peng S, Mann D, Cao J, Tu R, Cho K J, Dai H J. J. Phys. Chem. B, 2005, 109: 6968-6971
[64] Ghorannevis Z, Kato T, Kaneko T, Hatakeyama R. J. Am. Chem. Soc., 2010, 132: 9570-9572
[65] Benedict L X, Louie S G, Cohen M L. Phys. Rev. B, 1995, 52: 8541-8549
[66] Krupke R, Hennrich F, Lohneysen H, Kappes M M. Science, 2003, 301: 344-347
[67] Peng B, Jiang S, Zhang Y, Zhang J. Carbon, 2011, 49: 2555-2560
[68] Hong G, Zhang B, Peng B H, Zhang J, Choi W M, Choi J Y, Kim J M, Liu Z F. J. Am. Chem. Soc., 2009, 131: 14642-14643
[69] Zhang Y Y, Zhang Y, Xian X J, Zhang J, Liu Z F. J. Phys. Chem. C, 2008, 112: 3849-3856
[70] Alvarez N T, Kittrell C, Schmidt H K, Hauge R H, Engel P S, Tour J M. J. Am. Chem. Soc., 2008, 130: 14227-14233
[71] Su M, Li Y, Maynor B, Buldum A, Lu J P, Liu J. J. Phys. Chem., 2000, 104: 6505-6508
[72] Ismach A, Segev L, Wachtel E, Joselevich E. Angew. Chem. Int. Ed., 2004, 116: 6266-6269
[73] Han S, Liu X L, Zhou C W. J. Am. Chem. Soc., 2005, 127: 5294-5295
[74] Feng C Q, Yao Y G, Zhang J, Liu Z F. Nano Res., 2009, 2: 768-773.
[75] Hunley D P, Johnson S L, Stieha J K, Sundararajan A, Meacham A T, Ivanov I N, Strachan D R. ACS Nano, 2011, 5: 6403-6409
[76] Chen Y B, Hu Y, Guo X L, Xu Z W, Xu W G, Li P, Shen Z Y, Ding F, Zhang Y F, Zhang J. submitted.
[77] Ishigami N, Ago H, Imamoto K, Tsuji M, Iakoubovskii K, Minami N. J. Am. Chem. Soc., 2008, 130: 9918-9924
[78] Chen Y, Hu Y, Fang, Y, Li P, Feng C, Zhang J. Carbon, 2011, 50: 3295-3297
[79] Han S, Liu X, Zhou C. J. Am. Chem. Soc., 2005, 127: 5294-5295
[80] Liu X, Ryu K, Badmaev A, Han S, Zhou C. J. Phys. Chem. C, 2008, 112: 15929-15933
[81] Zhang B, Hong G, Peng B H, Zhang J, Choi W, Kim J M, Choi J Y, Liu Z F. J. Phys. Chem. C, 2009, 113: 5341-5344
[82] Geblinger N, Ismach A, Joselevich E. Nat. Nanotechnol., 2008, 3: 195-200
[83] Yao Y, Dai X, Feng C, Zhang J, Liang X, Ding L, Choi W, Choi J Y, Kim J M, Liu Z. Adv. Mater., 2009, 21: 4158-4162
[84] Jeong G H, Yamazaki A, Suzuki S, Yoshimura H, Kobayashi Y, Homma Y. Carbon, 2007, 45: 978-983
[85] Lu J, Yi S S, Kopley T, Qian C, Liu J, Gulari E. J. Phys. Chem., 2006, 110: 6655-6660
[86] Kobayashi K, Kitaura R, Kumai Y, Goto Y, Inagaki S, Shinohara H. Chem. Phys. Lett., 2008, 458: 346-350
[87] Persson A I, Larsson M W, Stenstrm S, Ohlsson B J, Samuelson L, Wallenberg L R. Nat. Mater., 2004, 3: 677-681
[88] Takagi D, Hibino H, Suzuki S, Kobayashi Y, Homma Y. Nano Lett., 2007, 7: 2272-2275
[89] Derycke V, Martel R, Radosavljevic M, Ross F M, Avouris P. Nano Lett., 2002, 2: 1043-1046
[90] Liu B L, Tang D M, Sun C H, Liu C, Ren W C, Li F, Yu W J, Yin L C, Zhang L L, Jiang C B. J. Am. Chem. Soc., 2011, 133: 197-199
[91] Chen Y B, Zhang J. Carbon, 2011, 49: 3316-3324
[92] Liu B L, Ren W C, Liu C, Sun C H, Gao L B, Li S S, Jiang C B, Cheng H M. ACS Nano, 2009, 3: 3421-3430
[93] Reich S, Li L, Robertson J. Phys. Rev. B, 2005, 72: art. no. 165423
[94] Wang Y H, Kim M J, Shan H W, Kittrell C, Fan H, Ericson L M, Hwang W F, Arepalli S, Hauge R H, Smalley R E. Nano Lett., 2005, 5: 997-1002
[95] Yao Y, Feng C, Zhang J, Liu Z. Nano Lett., 2009, 9: 1673-1677
[96] Liu J, Wang C, Tu X, Liu B, Chen L, Zheng M, Zhou C. Nat. Commun. , 2012, 3: art. no. 1199
[97] Yu X, Zhang J, Choi W M, Choi J Y, Kim J M, Gan L, Liu Z. Nano Lett., 2010, 10: 3343-3349
[98] Dahl J, Liu S, Carlson R. Science, 2003, 299: 96-99

[1] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[2] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[3] 刘晓璐, 耿钰晓, 郝然, 刘玉萍, 袁忠勇, 李伟. 环境条件下电催化氮还原的现状、挑战与展望[J]. 化学进展, 2021, 33(7): 1074-1091.
[4] 张安睿, 艾玥洁. 共价有机框架(COFs)材料的结构控制及其在环境化学中的应用[J]. 化学进展, 2020, 32(10): 1564-1581.
[5] 焦成鹏, 黄自力, 张海军, 张少伟. 置换反应制备双金属纳米催化剂[J]. 化学进展, 2015, 27(5): 472-481.
[6] 李昱达, 王迅昶, 吕仁亮, 汪锋. 非共价法分离光学活性单壁碳纳米管[J]. 化学进展, 2014, 26(08): 1361-1368.
[7] 吴优, 赵鑫, 赵莹, 刘守新*. 多阶有序多孔炭的软模板法合成与结构控制[J]. 化学进展, 2013, 25(05): 735-743.
[8] 王金业, 宋晨, 徐景坤, 丁宝全. 利用DNA折纸术构建功能纳米材料[J]. 化学进展, 2012, (10): 1936-1945.
[9] 杨应奎 邱胜强 王贤保 解孝林. 碳纳米管的聚合物功能化与结构控制:聚合物接枝碳纳米管*[J]. 化学进展, 2010, 22(04): 684-695.
[10] 林高锋 孟令杰 张晓科 路庆华. 非共价方法分离金属型和半导体型单壁碳纳米管[J]. 化学进展, 2010, 22(0203): 331-337.
[11] 赵德华,吕德伟,臧雅茹,赵学庄. 多相催化中的溢流作用[J]. 化学进展, 1997, 9(02): 123-.