English
新闻公告
More
化学进展 2014, Vol. 26 Issue (08): 1285-1291 DOI: 10.7536/PC140436 前一篇   后一篇

• 综述与评论 •

Hofmeister离子序列及其调控水溶液中大分子溶质行为的作用机制

李晓佩1,2, 黄昆*1, 林洁媛1,2, 徐怡庄*3, 刘会洲*1   

  1. 1. 中国科学院过程工程研究所 中国科学院绿色过程与工程重点实验室 北京 100190;
    2. 中国科学院大学 北京 100049;
    3. 北京大学化学与分子工程学院 北京 100871
  • 收稿日期:2014-04-01 修回日期:2014-05-01 出版日期:2014-08-15 发布日期:2014-06-10
  • 通讯作者: 黄昆, 徐怡庄, 刘会洲 E-mail:khuang@ipe.ac.cn;xyz@pku.edu.cn;hzliu@ipe.ac.cn
  • 基金资助:

    国家自然科学基金项目(No. 51074150,21136009)和国家重点基础研究发展计划(973)项目(No. 2012CBA01203,2013CB632602)资助

Hofmeister Ion Series and Its Mechanism of Action on Affecting the Behavior of Macromolecular Solutes in Aqueous Solution

Li Xiaopei1,2, Huang Kun*1, Lin Jieyuan1,2, Xu Yizhuang*3, Liu Huizhou*1   

  1. 1. Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China;
    2. University of the Chinese Academy of Sciences, Beijing 100049, China;
    3. College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
  • Received:2014-04-01 Revised:2014-05-01 Online:2014-08-15 Published:2014-06-10
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 51074150, 21136009) and the State Key Development Program for Basic Research of China (973 Program, No. 2012CBA01203, 2013CB632602)

Hofmeister离子序列涉及到的问题十分广泛,对很多化学和生物体系都有影响。关于Hofmeister离子序列调控水溶液中大分子溶质行为的作用机制,目前的研究主要有两类观点:一类认为Hofmeister离子是通过与水分子相互作用间接影响水溶液中大分子溶质的存在状态及聚集行为;而另一类则认为Hofmeister离子与水溶液中大分子溶质之间存在直接相互作用是导致Hofmeister离子序列的内在原因。本文详细介绍了上述两类观点的研究工作,并对该领域的最新进展进行了评述。由于实际体系中可能存在水分子-水分子、水分子-离子、水分子-溶质分子、阴离子-阳离子等众多复杂的相互作用,上述两类观点其实都只是从一个侧面解释了Hofmeister离子序列,对Hofmeister离子序列及其作用机制的研究仍然有待深入。

Hofmeister ion series is ubiquitous and turns up frequently in many chemical and biological processes. The explanations for its mechanism of action on target macromolecules in aqueous solutions fall into two categories. The first one states that ions affect the behavior of macromolecular solutes in the aqueous solution by interacting with water, while the other one claims that direct interactions between ions and macromolecules are the key point for comprehending the Hofmeister ion series. In this paper, research works on the two mechanisms of action are elaborately reviewed. In fact, actual solution systems are inevitably complicated by rather delicate balance of all the interactions (e.g., water-water, water-ion, water-solute, ion-solute, cation-anion) and the above mentioned two viewpoints explain the Hofmeister ion series just from one side. More work is still needed to dig into the secret behind the Hofmeister ion series.

Contents
1 Introduction
2 Indirect mechanism of action
3 Direct mechanism of action
4 Conclusion and outlook

中图分类号: 

()

[1] Parsons D F, Bostrom M, Lo Nostro P, Ninham B W. Phys. Chem. Chem. Phys., 2011, 13: 12352.
[2] Paterova J, Rembert K B, Heyda J, Kurra Y, Okur H I, Liu W R. J. Phys. Chem. B, 2013, 117: 8150.
[3] Bostroem M, Parsons D F, Salis A, Ninham B W, Monduzzi M. Langmuir, 2011, 27: 9504.
[4] Zhang Y J, Cremer P S. Proc. Natl. Acad. Sci., U.S.A., 2009,106: 15249.
[5] Flores S C, Kherb J, Cremer P S. J. Phys. Chem. C, 2012, 116: 14408.
[6] Pinna M C, Salis A, Monduzzi M, Ninham B W. J. Phys. Chem. B, 2005, 109: 5406.
[7] Yang Z. J. Biotechnol., 2009, 144: 12.
[8] Lo Nostro P, Ninham B W, Milani S, Fratoni L, Baglioni P. Biopolymers, 2006, 81: 136.
[9] Lo Nostro P, Ninham B W, Lo Nostro A, Pesavento G, Fratoni L, Baglioni P. Phys. Biol., 2005, 2: 1.
[10] Hey M J, Jackson D P, Yan H. Polymer, 2005, 46: 2567.
[11] Leontidis E. Curr. Opin. Colloid Interface Sci., 2002, 7: 81.
[12] Mracek A, Varhanikova J, Lehocky M, Grundelova L, Pokopcova A, Velebny V. Molecules, 2008, 13: 1025.
[13] Ninham B W. The Present State of Molecular Forces. Richtering W, Ed. Smart Colloidal Materials, 2006. 65.
[14] Schwierz N, Netz R R. Langmuir, 2012, 28: 3881.
[15] Curtis R A, Ulrich J, Montaser A, Prausnitz J M, Blanch H W. Biotechnol. Bioeng., 2002, 79: 367.
[16] Sagheer F A, Hey M J. Colloid Surf. A-Physicochem. Eng. Asp., 2004, 245: 99.
[17] Thormann E. RSC Adv., 2012, 2: 8297.
[18] Shechter I, Ramon O, Portnaya I, Paz Y, Livney Y D. Macromolecules, 2009, 43: 480.
[19] Collins K D, Washabaugh M W. Q. Rev. Biol., 1985, 18: 323.
[20] Parsegian V A. Nature, 1995, 378: 335.
[21] Perreur C, Habas J P, Lapp A, Peyrelasse J. Polymer, 2006,47: 841.
[22] Mancinelli R, Botti A, Bruni F, Ricci M A, Soper A K. Phys. Chem. Chem. Phys., 2007, 9: 2959.
[23] Frank H S, Franks F. J. Chem. Phys., 1968, 48: 4746.
[24] Baldwin R L. Biophys. J., 1996, 71: 2056.
[25] Cacace M G, Landau E M, Ramsden J J. Q. Rev. Biol., 1997, 30: 241.
[26] Florin E, Kjellander R, Eriksson J C. J. Chem. Soc., Faraday Trans., 1984, 80: 2889.
[27] Collins K D. Methods, 2004, 34: 300.
[28] Nucci N V, Vanderkooi J M. J. Mol. Liq., 2008,143: 160.
[29] Su Y L, Wei X F, Liu H Z. J. Colloid Interface Sci., 2003, 264: 526.
[30] Su Y L, Liu H Z, Wang J, Chen J Y. Langmuir, 2002, 18: 865.
[31] Zheng L L, Guo C, Wang J, Liang X F. Vib. Spectrosc., 2005, 39: 157.
[32] Ma J H, Guo C, Tang Y L, Wang J, Zheng L, Liang X F. Langmuir, 2007, 23: 3075.
[33] Omta A W, Kropman M F, Woutersen S, Bakker H J. Science, 2003, 301: 347.
[34] Omta A W, Kropman M F, Woutersen S, Bakker H J. J. Chem. Phys., 2003, 119: 12457.
[35] Batchelor J D, Olteanu A, Tripathy A, Pielak G J. J. Am. Chem. Soc., 2004, 126: 1958.
[36] Gurau M C, Lim S M, Castellana E T, Albertorio F, Kataoka S, Cremer P S. J. Am. Chem. Soc., 2004, 126: 10522.
[37] Chen X, Yang T, Kataoka S, Cremer P S. J. Am. Chem. Soc., 2007,129: 12272.
[38] Gragson D E, McCarty B M, Richmond G L. J. Am. Chem. Soc., 1997, 119: 6144.
[39] Zhang Y J, Furyk S, Bergbreiter D E, Cremer P S. J. Am. Chem. Soc., 2005, 127: 14505.
[40] Zhang Y J, Furyk S, Sagle L B, Cho Y, Bergbreiter D E, Cremer P S. J. Phys. Chem. C, 2007, 111: 8916.
[41] Cho Y, Zhang Y J, Christensen T, Sagle L B, Chilkoti A, Cremer P S. J. Phys. Chem. B, 2008, 112: 13765.
[42] Deyerle B A, Zhang Y J. Langmuir, 2011, 27: 9203.
[43] Gibb C L D, Gibb B C. J. Am. Chem. Soc., 2011, 133: 7344.
[44] Finney J L, Bowron D T. Curr. Opin. Colloid Interface Sci., 2004, 9: 59.
[45] Tasaki K. Comput. Theor. Polym. Sci., 1999, 9: 271.
[46] Florin E. Macromolecules, 1985, 18: 360.
[47] Xie W, Liu C, Yang L, Gao Y. Sci. China Chem., 2014, 57: 36.
[48] Marcus Y. Chem. Rev., 2009, 109: 1346.
[49] Marcus Y. Pure Appl. Chem., 2010, 82: 1889.
[50] Zhou H X. Proteins: Struct., Funct., Bioinf., 2005, 61: 69.
[51] Bostrom M, Kunz W, Ninham B W. Langmuir, 2005, 21: 2619.
[52] Bostrom M, Williams D R M, Ninham B W. Langmuir, 2001, 17: 4475.
[53] Bostrom M, Williams D R M, Ninham B W. Langmuir, 2002, 18: 8609.
[54] Boström M, Williams D R M, Ninham B W. Langmuir, 2002, 18: 6010.
[55] Ninham B W, Yaminsky V. Langmuir, 1997, 13: 2097.
[56] Huang H, Ruckenstein E. J. Phys. Chem. Lett., 2013, 4: 3725.
[57] Manciu M, Ruckenstein E. Langmuir, 2002, 18: 5178.

[1] 贾航, 乔越, 张玉, 孟庆鑫, 刘程, 蹇锡高. 玄武岩纤维增强树脂基复合材料界面改性策略[J]. 化学进展, 2020, 32(9): 1307-1315.
[2] 吴锋, 赵双义, 卢赟, 李健, 苏岳锋, 陈来. 化学结合力载体在锂硫电池中的应用[J]. 化学进展, 2017, 29(6): 593-604.
[3] 张明明, 樊建芬, 于怡, 闫希亮, 许健. 生物铵转运蛋白对NH3/NH4+作用机理研究[J]. 化学进展, 2015, 27(11): 1658-1664.
[4] 徐刚, 姜平元, 苟少华*. 抗肿瘤多核铂配合物的研究[J]. 化学进展, 2012, (9): 1707-1719.
[5] 田圆, 赵倩莹, 胡靖, 周辰, 缪灵, 江建军. 衬底上石墨烯制备及改性研究[J]. 化学进展, 2012, 24(04): 512-522.
[6] 张鹭 侯玉霞 袁会珠 覃兆海. 复合物Ⅲ抑制剂型杀菌剂——结构类型和作用机理*[J]. 化学进展, 2010, 22(09): 1852-1868.
[7] 柴永明,安高军,柳云骐,刘晨光. 过渡金属硫化物催化剂催化加氢作用机理*[J]. 化学进展, 2007, 19(0203): 234-242.
[8] 杨频,高飞,马贵斌. 化学核酸酶及其作用机理[J]. 化学进展, 1997, 9(03): 273-.
[9] 商振华,周良模. 膜亲和色谱的现状、发展和应用[J]. 化学进展, 1995, 7(01): 47-.