English
新闻公告
More
化学进展 2014, Vol. 26 Issue (07): 1190-1201 DOI: 10.7536/PC140150 前一篇   后一篇

• 综述与评论 •

聚合物晶胶的制备、性能及生物医学应用

刘春桃, 童国权, 陈朝珠, 谭子芳, 全昌云, 张超*   

  1. 中山大学工学院 广州 510006
  • 收稿日期:2014-01-01 修回日期:2014-03-01 出版日期:2014-07-15 发布日期:2014-05-22
  • 通讯作者: 张超 E-mail:zhchao9@mail.sysu.edu.cn

Polymeric Cryogel:Preparation, Properties and Biomedical Applications

Liu Chuntao, Tong Guoquan, Chen Chaozhu, Tan Zifang, Quan Changyun, Zhang Chao*   

  1. School of Engineering, Sun Yat-sen University, Guangzhou 510006, China
  • Received:2014-01-01 Revised:2014-03-01 Online:2014-07-15 Published:2014-05-22

利用低温凝胶化技术制备的聚合物晶胶,具有贯通多孔结构,因其化学/机械稳定性,可用于生物微粒(质粒、病毒、细胞器)和细胞的分离、生物分子和细胞的固定化载体以及组织工程三维支架等领域。本文详细介绍了聚合物晶胶的制备条件(如单体浓度、冷冻过程、引发剂浓度、溶剂等)与其结构、性能的关系;同时,对聚合物晶胶功能化改性及其在生物物质的色谱分离和生物医学领域的应用进行了总结与展望。

Polymeric cryogel with interconnected pore structure can be prepared using the cryogelation technique and have been paid intensive attention in the fields of both academia and industry. Because of its high porosity, permeability, and chemical/mechanical stability, polymeric cryogel has been widely used as stationary phase in chromatography separation of particulate-containing fluids and cells, carriers for immobilization of cell/biological particulates, and three-dimensional scaffolds for tissue engineering. This paper introduces in detail the preparation of polymeric cryogel and relationship between its structural parameters and preparation process, such as concentration of monomer/precursor/initiator, freezing process, and solvent. The functionalization of cryogels as well as its biomedical applications are also summarized.

Contents
1 Introduction
1.1 Preparation and structure of polymeric cryogels
1.2 Pore structure and the preparation process
1.3 Structure characterization of cryogels
2 Functionalization of polymeric cryogels
2.1 Copolymerization of functional monomers
2.2 Surface coupling of functional groups
2.3 Surface graft polymerization
2.4 Double crosslinking
2.5 Composite cryogels
3 Application of polymeric cryogels
3.1 Stationary phase in chromatography separation of cell/biological particulate
3.2 Carrier for immobilization of cell/biological particulate
3.3 Scaffold for tissue engineering
4 Conclusion and outlook

中图分类号: 

()

[1] Hjertén S, Liao J L, Zhang R. J. Chromatogr. A, 1989, 473: 273.
[2] Nam Y S, Park T G. J. Biomed. Mater. Res., 1999, 47: 8.
[3] Wood C D, Cooper A I. Macromolecules, 2001, 34: 5.
[4] Kabiri K, Omidian H, Zohuriaan-Mehr M J. Polym. Int., 2003, 52: 1158.
[5] Hentze H P, Antonietti M. Rev. Mol. Biotechnol., 2002, 90(1): 27.
[6] Lozinsky V I, Galaev I Y, Plieva F M, Savina I N, Jungvid H, Mattiasson B. Trends Biotechnol., 2003, 21: 445.
[7] Plieva F M, Galaev I Y, Mattiasson B. J. Sep. Sci., 2007, 30: 1657.
[8] Plieva F M, Karlsson M, Aguilar M R, Gomez D, Mikhalovsky S, Galaev I Y. Soft Matter, 2005, 1: 303.
[9] Plieva F M, Savina I N, Deraz S, Andersson J, Galaev I Y, MattiassonB. J. Chromatogr. B, 2004, 807(1): 129.
[10] Plieva F M, Xiao H T, Galaev I Y, Bergensthl B, Mattiasson B. J. Mater. Chem., 2006, 16: 4065.
[11] Hwang Y S, Zhang C, Varghese S. J. Mater. Chem., 2010, 20: 345.
[12] Tang S Z, Shen S C, Yun J X, Yao K J. J. Chem. Eng. Chin. Univ., 2010, 24(6): 974.
[13] 王良华(Wang L H). 浙江大学博士论文(Doctoral Dissertation of Zhejiang University),2008
[14] 陈芳(Chen F). 浙江工业大学硕士论文(Master Dissertation of Zhejiang University of Technology), 2008.
[15] Bencherif S A, Sands R W, Bhatta D, Arany P, Verbeke C S, Edwards D A, Mooney D J. Proc. Natl. Acad. Sci. USA, 2012, 109(48): 19590.
[16] Dainiak M B, Kumar A, Galaev I Y, Mattiasson B. Proc. Natl. Acad. Sci. USA, 2006, 103(4): 849.
[17] Plieva F M, Bober B, Dainiak M, Galaev I Y, Mattiasson B. J. Mol. Recognit., 2006, 19: 305.
[18] Ozmen M M, Okay O. Polymer, 2005, 46(19): 8119.
[19] Dainiak M B, Savina I N, Musolino I, Kumar A, Mattiasson B, Galaev I Y. Biotechnol. Prog., 2008, 24(6): 1373.
[20] Arvidssona P, Plieva F M, Lozinskyb V I, Galaeva I Y, Mattiasson B. J. Chromatogr. A, 2003, 986: 275.
[21] Kumar A, Plieva F M, Galaeva I Y, Mattiasson B. J. Immunol. Methods., 2003, 283: 185.
[22] Lysogorskaya E N, Roslyakova T V, Belyaeva A V, Lozinskii V I, Filippova I Y. Appl. Biochem. Microbiol., 2008, 44(3): 241.
[23] Savina I N, Galaev I Y, Mattiasson B. J. Chromatogr. A, 2005, 1092(2): 199.
[24] Savina I N, Galaev I Y, Mattiasson B. J. Mol. Recognit., 2006, 19: 313.
[25] Savina I N, Galaev I Y, Mattiasson B. Polymer, 2005, 46: 9596.
[26] Plieva F M, Ekstrom P, Galaev I Y, Mattiasson B. Soft Matter, 2008, 4: 2418.
[27] Zhao Q, Sun J Z, Wu X F, Lin Y T. Soft Matter, 2011, 7(9): 4284.
[28] Yao K J, Yun J X, Shen S C, Wang L H, He X J, Yu X M. J. Chromatogr. A, 2006, 1109: 103.
[29] Noir M L, Plieva F M, Hey T, Guieysse B, Mattiasson B. J. Chromatogr. A, 2007, 1154: 158.
[30] Hajizadeh S, Kirsebom H, Mattiasson B. Soft Matter, 2010, 6: 5562.
[31] Kueseng P, Thammakhet C, Thavarungkul P, Kanatharana P. Microchem. J., 2010, 96: 317.
[32] Xu P P, Yao Y C, Shen S C, Yun J X, Yao K J. Chin. J. Nucl. Phys., 2010, 18(4): 667.
[33] De Cock L J, De Wever O, Vlierberghe S, Vanderleyden E, Dubruel P, De Vos F, Vervaet C, Remon J P, De Geest B G. Soft Matter, 2012, 8(4): 1146.
[34] Arvidsson P, Plieva F M, Savina I N, Lozinsky V I, Fexby S, Bulow L, Galaev I Y, Mattiasson B. J. Chromatogr. A, 2002, 977: 27.
[35] Arvidsson P, Plieva F M, Lozinsky V I, Mattiasson B. J. Chromatogr. A, 2003, 986:275.
[36] Dainiak M B, Plieva F M, Galaev I Y, Hatti-kaul R, Mattiasson B. Biotechnol. Prog., 2005, 21: 644.
[37] Babac C, Yavuz H, Galaev I Y, Piskin E, Denizli A. React. Funct. Polym., 2006, 66(11): 1263.
[38] Yan L D, Shen S C, Yun J X, Yao K J. Chin. J. Nucl. Phys., 2011, 5: 876.
[39] Zhan X Y, Lu D P, Lin D Q, Yao S J. J. Appl. Polym. Sci., 2013, 130(5): 3082.
[40] Shen S C, Wang L Y, Sun Z T, Li M F, Liu C Z, Tian B, Yun J X, Hua Y J. Chin. J. Nucl. Phys., 2013, 21(6): 663.
[41] 沈绍传(Shen S C). 浙江大学博士论文( Doctoral Dissertation of Zhejiang University), 2011.
[42] Yu X M, Zhao P, Zhang W B, Zhang Y K, Zhang L H. Prog. Modern Biomed., 2013, 13(6): 1015.
[43] 何兴娇(He X J). 浙江工业大学硕士论文(Master Dissertation of Zhejiang University of Technology), 2007.
[44] Guo Y T, Shen S C, Yun J X, Yao K J. Chin. J. Biotech., 2012, 28(8): 995.
[45] Yun J X, Dafoe J T, Peterson E, Xu L H, Yao S J, Daugulis A J. J. Chromatogr. A, 2013, 1284: 148.
[46] Wang L H, Chen F, Yun J X, Yao K J, Yao S J. J. Chem. Eng. Chin.Univ., 2009, 23(3): 480.
[47] Yun J X, Dafoe J T, Peterson E, Xu L H, Yao S J, Daugulis A J. J. Chromatogr. A, 2013, 1284: 148.
[48] Dainiak M B, Kumar A, Plieva F M, Mattiasson B. J. Chromatogr. A, 2004, 1045: 93.
[49] Noppe W, Plieva F M, Galaev I Y, Mattiasson B. J. Chromatogr. A, 2006, 1101: 79.
[50] Plieva F M, Karlsson, Mattiasson B. J. Appl. Polym. Sci., 2006, 100(2): 1057.
[51] Bacheva A V, Plieva F M, Lysogorskaya E N, FilippovaI Y, Lozinsky V I. Bioorg. Med. Chem. Lett., 2001, 11: 1005.
[52] Plieva F M, Kochetkov K A, Singh I, Parmar V S, Belokon Y N, Lozinsky V I. Biotechnol. Lett., 2000, 22: 551.
[53] Bereli N, Anda M, Baydemir G, Say R, Filippova I Y, Galaev I Y, Denizli A. J. Chromatogr. A, 2008, 1190: 18.
[54] Baydemir G, Bereli N, Anda M, Say R, Galaev I Y, Denizli A. Colloid. Surface. B, 2009, 68: 33.
[55] Derazshamshir A, Baydemir G, Andac M, Say R, Galaev I Y, Denizli A. Macromol. Chem. Phys., 2010, 211: 657.
[56] Deng Y P, Zhang G H, Xu L H, Shen S C, Yun J X, Yao K J. J. Chem. Eng. Chin. Univ., 2013, 21(1): 119.
[57] Chen Z Y, Xu L, Liang Y, Wang J B, Zhao M P, Li Y Z. J. Chromatogr. A, 2007, 1182: 128.
[58] Bloch K, LozinskyV I, Galaev I Y, Yavriyanz K, Vorobeychik M, Azarov D, Damshkaln L G, Mattiasson B, Vardi1 P. J. Biomed. Mater. Res., Part A, 2005, 75A(4): 802.
[59] Sun S J, Tang Y H, Fu Q, Zhao Y D. J. Sep. Sci., 2012, 35(7): 893.
[60] Sun S J, Tang Y H, Fu Q, Liu X, Guo Y A, Zhao Y D, Chang C. Int. J Biol. Macromol., 2012, 50(4): 1002.
[61] Kathuria N, Tripathi A, KumarA. Acta. Metall., 2009, 5: 406.
[62] Arrua R D, Haddad P R, Hilder E F. J. Chromatogr. A, 2013, 1311: 121.
[63] 张凯(Zhang K). 中国地质大学硕士论文(Master Dissertation of China University of Geosciences), 2012.
[64] Kumakura M. Polym. Adv. Technol., 2001, 12: 415.
[65] Sutani K, Kaetsu I, Uchida K. Radiat. Phys. Chem., 2001, 61: 49.
[66] Hayashi T, Hyon S H, Cha W I, Ikada Y. J. Appl. Polym. Sci., 1993, 49: 2121.
[67] Belokon Y N, Kochetkov K A, Plieva F M. Appl. Biochem. Biotechnol., 2000, 88: 97.
[68] Filippova I Y, Bacheva A V, Baibak O V, Plieva F M, Lysogorskaya E N, Oksenoit E S, Lozinsky V I. Russ. Chem. Bull., 2001, 50: 1896.
[69] Lusta K A, Starostina N G, Gorkina N B, Fikhte B A, Lozinski V I. Prikl. Biokhim. Mikrobiol., 1988, 24(4): 504.
[70] Kumar A, Caballero A R, Plieva F M, Galaev I Y, Nandakumar K S, Kamihira M, Holmdahl R, Orfao A, Mattiasson B. J. Mol. Recognit., 2005, 18: 84.
[71] Lusta K A, Chung K, Sul W, Park H S, Shin D. Process. Biochem., 2000, 35: 1177-1182
[72] Scardi V. Methods Enzymol., 1987, 135B: 293.
[73] Kirsebom H, Aguilar M R, Roman J S, Fernandez M, Prieto M A, Bondar B. J. Bioact. Compat. Pol, 2007, 22(6): 621.
[74] Jurga M, Dainiak M B, Sarnowska A, Jablonska A, Tripathi A, Plieva F M, Savina I N, Strojek L, Jungvid H, Kumar A, Lukomska B, Janik K D, Forraz N, McGuckin C P. Biomaterials, 2011, 32(13): 3423.
[75] Tripathi A, Kathuria N, Kumar A. J. Biomed. Mater. Res. Part A, 2009, 90A(3): 680.
[76] Tripathi A, Kumar A. Macromol. Biosci., 2011, 11(1): 22.
[77] Tripathi A, Vishnoi T, Singh D, Kumar A. Macromol. Biosci., 2013, 13: 838.
[78] Liu Y, Vrana N E, Cahil P A, McGuinness G B. J. Biomed. Mater. Res.B, 2009, 90B(2): 492.
[79] Mathews D T, Birney Y A, Cahill P A, McGuinness G B. J. Biomed. Mater. Res. B, 2008, 84B(2): 531.
[80] Bajpai A K, Saini R. J. Mater. Sci. Mater. Med., 2009, 20(10): 2063.
[81] Vrana N E, Cahill P A, McGuinness G B. J. Biomed. Mater. Res. A, 2010, 94A(4): 1080.
[82] Vrana N E, Matsumura K, Hyon S H, Geever L M, Kennedy J E, Lyons J G, Higginbotham C L, Cahill P A, McGuinness G B. J. Tissue. Eng. Regen. Med., 2012, 6(4): 280.
[83] Bolgen N, Vargel I, Korkusuz P. J. Biomed. Mater. Res. A, 2009, 91A(1): 60.
[84] Singh D, Nayak V, Kumar A. Int. J. Biol. Sci., 2010, 6(4): 371.
[85] Savina I N, Dainiak M, Jungvid H, Mikhalovcky S V, Galaev L Y. J. Biomater. Sci., Polym. Ed., 2009, 20(12): 1781.
[86] Blgen N, Yang Y, Korkusuz P, Güzel E, Haj A J, Pi?kin E. J. Tissue. Eng.Regen.Med., 2011, 5(10): 770.
[87] Singh D, Tripathi A, Nayak V, Kumar A. J. Biomater. Sci., Polym. Ed., 2011, 22(13): 1733.
[88] Phadke A, Hwang Y S, Kim S H, Kim S H, Yamaguchi T, Masuda K, Varghese S. Eur. Cells. Mater., 2013, 25: 114.
[89] Zhan X Y, Lu D P, Lin D Q, Yao S J. J. Appl. Polym. Sci., 2013, 12(5): 3082.
[90] Mu C D, Liu F, Cheng Q S, Li H L, Wu B, Zhang G Z, Lin W. Macromol. Mater. Eng., 2010, 295(2): 100.
[91] Jiang S, Liu S, Feng W H. J. Mech. Behav. Biomed., 2011, 4(7): 1228.

[1] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[2] 王克青, 薛慧敏, 秦晨晨, 崔巍. 二苯丙氨酸二肽微纳米结构的可控组装及应用[J]. 化学进展, 2022, 34(9): 1882-1895.
[3] 马佳慧, 袁伟, 刘思敏, 赵智勇. 小分子共价DNA的组装及生物医学应用[J]. 化学进展, 2022, 34(4): 837-845.
[4] 蔡雪儿, 简美玲, 周少红, 王泽峰, 王柯敏, 刘剑波. 人造细胞的化学构建及其生物医学应用研究[J]. 化学进展, 2022, 34(11): 2462-2475.
[5] 赵平平, 杨军星, 施健辉, 朱静怡. 基于树状大分子的SPECT成像造影剂的构建及其应用[J]. 化学进展, 2021, 33(3): 394-405.
[6] 李霞, 马红艳, 聂晓娟, 刘旭, 卞成明, 谢龙. 星形环糊精聚合物的制备及其应用[J]. 化学进展, 2020, 32(7): 935-942.
[7] 胡强强, 郭和泽, 窦红静. ZIF-8纳米颗粒的粒径调控及生物医学应用[J]. 化学进展, 2020, 32(5): 656-664.
[8] 杨悦, 王珏玉, 赵敏, 崔岱宗. 病毒模板合成的金属纳米材料及应用[J]. 化学进展, 2019, 31(7): 1007-1019.
[9] 曹小卫, 陈帅, 鲍敏, 史宏灿, 李巍. 金纳米星的制备、表面修饰及其在生物医学领域的应用研究[J]. 化学进展, 2018, 30(9): 1380-1391.
[10] 肖肖, 陈昌盛, 刘伟强, 张业顺. 丝胶蛋白的结构、性能及生物医学应用[J]. 化学进展, 2017, 29(5): 513-523.
[11] 王瑞莹, 张超艳, 王淑萍, 周友亚. 磁性金属-有机骨架材料的合成及其应用[J]. 化学进展, 2015, 27(7): 945-952.
[12] 刘迎亚, 范霄, 李艳艳, 渠陆陆, 覃海月, 曹英男, 李海涛. 多光谱光声层析成像及其在生物医学中的应用[J]. 化学进展, 2015, 27(10): 1459-1469.
[13] 吴伟兵, 张磊. 纳晶纤维素的功能化及应用[J]. 化学进展, 2014, 26(0203): 403-414.
[14] 刘红艳, 周健* . 两性离子聚合物的生物应用[J]. 化学进展, 2012, 24(11): 2187-2197.
[15] 杜凯, 朱艳红, 徐辉碧, 杨祥良. 多功能磁性纳米粒的合成、修饰及生物医学应用[J]. 化学进展, 2011, 23(11): 2287-2298.