English
新闻公告
More
化学进展 2014, Vol. 26 Issue (06): 931-938 DOI: 10.7536/PC131236 前一篇   后一篇

• 综述与评论 •

基于功能化纳米材料的光化学阵列传感器

陆跃翔*   

  1. 清华大学核能与新能源技术研究院 北京 100084
  • 收稿日期:2013-12-01 修回日期:2014-02-01 出版日期:2014-06-15 发布日期:2014-03-31
  • 通讯作者: 陆跃翔 E-mail:luyuexiang@mail.tsinghua.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 21390413)资助

Optical Chemical Sensor Array Based on Functional Nanomaterials

Lu Yuexiang*   

  1. Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
  • Received:2013-12-01 Revised:2014-02-01 Online:2014-06-15 Published:2014-03-31
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 21390413)

阵列传感器采用人工模拟嗅觉系统的传感模式,实现多点信息的同时获取,极大地提高了分析效率,在公共安全、环境监测、医学检测等领域具有广阔的应用前景。其中,光化学阵列传感器因灵敏度高、输出信号丰富等优点而备受关注。近年来,为了进一步提高阵列传感器的识别能力和灵敏度,功能化纳米材料被广泛应用于光化学阵列传感器以增加传感材料的种类和发展新的传感方法。本文按照使用的光谱检测技术不同,详细介绍了功能化纳米材料在荧光、比色、催化发光和多通道阵列传感器等4类光化学阵列传感器中的应用。

A sensor array is an artificial olfactory system based on the array analysis method. On an array, information from different sensing units could be collected simultaneously, which improves the analysis efficiency of the sensors. This high-throughput sensing mode has broad application prospect in the areas such as public safety, environmental monitoring and medical diagnosis. Among different kinds of sensor arrays, optical chemical sensor arrays have attracted much attention because of their high sensitivity and abundant output signal types. In recent years, for further improving the identification ability and sensitivity of the arrays, functional nanomaterials have been widely applied in optical chemical sensor arrays for increasing sensing materials and developing new sensing methods. The present review introduces the applications of functional nanomaterials in optical sensor arrays which can be classified into fluorescent arrays, colorimetric arrays, cataluminescence arrays and multidimensional arrays according to the type of spectroscopic detection technology.

Contents
1 Introduction
2 Fluorescent sensor array
2.1 Sensor array based on gold nanoparticles
2.2 Sensor array based on fluorescent gold nanoclusters
2.3 Sensor array based on graphene
3 Colorimetric sensor array
3.1 Sensor array based on nanoporous pigments
3.2 Sensor array based on gold nanoparticles
3.3 Sensor array based on peroxidase mimic enzyme
4 Cataluminescence sensor array
5 Multidimensional sensor array
6 Conclusion and outlook

中图分类号: 

()

[1] Albert K J, Lewis N S, Schauer C L, Sotzing G A, Stitzel S E, Vaid T P, Walt D R. Chem. Rev., 2000, 100: 2595.
[2] Strike D J, Meijerink M G H, Koudelka-Hep M. Fresenius Journal of Analytical Chemistry, 1999, 364: 499.
[3] LaFratta C N, Walt D R. Chem. Rev., 2008, 108: 614.
[4] Askim J R, Mahmoudi M, Suslick K S. Chem. Soc. Rev., 2013, 42: 8649.
[5] Anzenbacher P Jr, Lubal P, Bucek P, Palacios M A, Kozelkova M E. Chem. Soc. Rev., 2010, 39: 3954.
[6] Jans H, Huo Q. Chem. Soc. Rev., 2012, 41: 2849.
[7] Saha K, Agasti S S, Kim C, Li X, Rotello V M. Chem. Rev., 2012, 112: 2739.
[8] You C C, Miranda O R, Gider B, Ghosh P S, Kim I B, Erdogan B, Krovi S A, Bunz U H F, Rotello V M. Nat. Nanotechnol., 2007, 2: 318.
[9] Adkins J N, Varnum S M, Auberry K J, Moore R J, Angell N H, Smith R D, Springer D L, Pounds J G. Mol. Cell. Proteomics, 2002, 1: 947.
[10] Pieper R, Gatlin C L, Makusky A J, Russo P S, Schatz C R, Miller S S, Su Q, McGrath A M, Estock M A, Parmar P P, Zhao M, Huang S T, Zhou J, Wang F, EsquerBlasco R, Anderson N L, Taylor J, Steiner S. Proteomics, 2003, 3: 1345.
[11] Antman E M, Tanasijevic M J, Thompson B, Schactman M, McCabe C H, Cannon C P, Fischer G A, Fung A Y, Thompson C, Wybenga D, Braunwald E. New Engl. J. Med., 1996, 335: 1342.
[12] De M, Rana S, Akpinar H, Miranda O R, Arvizo R R, Bunz U H F, Rotello V M. Nat. Chem., 2009, 1: 461.
[13] Hayden S C, Zhao G, Saha K, Phillips R L, Li X, Miranda O R, Rotello V M, El-Sayed M A, Schmidt-Krey I, Bunz U H F. J. Am. Chem. Soc., 2012, 134: 6920.
[14] Bajaj A, Miranda O R, Phillips R, Kim I B, Jerry D J, Bunz U H F, Rotello V M. J. Am. Chem. Soc., 2010, 132: 1018.
[15] Miranda O R, Chen H T, You C C, Mortenson D E, Yang X C, Bunz U H F, Rotello V M. J. Am. Chem. Soc., 2010, 132: 5285.
[16] Shang L, Dong S, Nienhaus G U. Nano Today, 2011, 6: 401.
[17] Lin C A J, Yang T Y, Lee C H, Huang S H, Sperling R A, Zanella M, Li J K, Shen J L, Wang H H, Yeh H I, Parak W J, Chang W H. ACS Nano, 2009, 3: 395.
[18] Liu Y, Ai K, Cheng X, Huo L, Lu L. Adv. Funct. Mater., 2010, 20: 951.
[19] Lin Y H, Tseng W L. Anal. Chem., 2010, 82: 9194.
[20] Wen F, Dong Y, Feng L, Wang S, Zhang S, Zhang X. Anal. Chem., 2011, 83: 1193.
[21] Kong H, Lu Y, Wang H, Wen F, Zhang S, Zhang X. Anal. Chem., 2012, 84: 4258.
[22] Loh K P, Bao Q, Eda G, Chhowalla M. Nat. Chem., 2010, 2: 1015.
[23] Chou S S, De M, Luo J, Rotello V M, Huang J, Dravid V P. J. Am. Chem. Soc., 2012, 134: 16725.
[24] He S, Song B, Li D, Zhu C, Qi W, Wen Y, Wang L, Song S, Fang H, Fan C. Adv. Funct. Mater., 2010, 20: 453.
[25] Li D, Song S, Fan C. Acc. Chem. Res., 2010, 43: 631.
[26] Pei H, Li J, Lv M, Wang J, Gao J, Lu J, Li Y, Huang Q, Hu J, Fan C. J. Am. Chem. Soc., 2012, 134: 13843.
[27] Rakow N A, Suslick K S. Nature, 2000, 406: 710.
[28] Suslick K S, Rakow N A, Sen A. Tetrahedron, 2004, 60: 11133.
[29] Rakow N A, Sen A, Janzen M C, Ponder J B, Suslick K S. Angew. Chem. Int. Ed., 2005, 44: 4528.
[30] Mazzone P J, Hammel J, Dweik R, Na J, Czich C, Laskowski D, Mekhail T. Thorax, 2007, 62: 565.
[31] Zhang C, Suslick K S. J. Am. Chem. Soc., 2005, 127: 11548.
[32] Lim S H, Feng L, Kemling J W, Musto C J, Suslick K S. Nat. Chem., 2009, 1: 562.
[33] Feng L, Musto C J, Kemling J W, Lim S H, Suslick K S. Chem. Commun., 2010, 46: 2037.
[34] Feng L, Musto C J, Kemling J W, Lim S H, Zhong W, Suslick K S. Anal. Chem., 2010, 82: 9433.
[35] Suslick B A, Feng L, Suslick K S. Anal. Chem., 2010, 82: 2067.
[36] Zhang C, Bailey D P, Suslick K S. J. Agric. Food Chem., 2006, 54: 4925.
[37] Zhang C, Suslick K S. J. Agric. Food Chem., 2007, 55: 237.
[38] Huang X, Xin J, Zhao J J. Food Eng., 2011, 105: 632.
[39] Salinas Y, Ros-Lis J V, Vivancos J L, Martinez-Manez R, Marcos M D, Aucejo S, Herranz N, Lorente I. Analyst, 2012, 137: 3635.
[40] Bang J H, Lim S H, Park E, Suslick K S. Langmuir, 2008, 24: 13168.
[41] Musto C J, Lim S H, Suslick K S. Anal. Chem., 2009, 81: 6526.
[42] Lin H, Suslick K S. J. Am. Chem. Soc., 2010, 132: 15519.
[43] Lin H, Jang M, Suslick K S. J. Am. Chem. Soc., 2011, 133: 16786.
[44] Carey J R, Susick K S, Hulkower K I, Imlay J A, Imlay K R C, Ingison C K, Ponder J B, Sen A, Wittrig A E. J. Am. Chem. Soc., 2011, 133: 7571.
[45] Ghosh S K, Pal T. Chem. Rev., 2007, 107: 4797.
[46] Halas N J, Lal S, Chang W S, Link S, Nordlander P. Chem. Rev., 2011, 111: 3913.
[47] Jones M R, Osberg K D, Macfarlane R J, Langille M R, Mirkin C A. Chem. Rev., 2011, 111: 3736.
[48] Mayer K M, Hafner J H. Chem. Rev., 2011, 111: 3828.
[49] Boisselier E, Astruc D. Chem. Soc. Rev., 2009, 38: 1759.
[50] Cobley C M, Chen J, Cho E C, Wang L V, Xia Y. Chem. Soc. Rev., 2011, 40: 44.
[51] Lu Y, Liu Y, Zhang S, Wang S, Zhang S, Zhang X. Anal. Chem., 2013, 85: 6571.
[52] Yang X, Li J, Pei H, Li D, Zhao Y, Gao J, Lu J, Shi J, Fan C, Huang Q. Small, 2013, 9: 2844.
[53] Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X. Nat. Nanotechnol., 2007, 2: 577.
[54] Asati A, Santra S, Kaittanis C, Nath S, Perez J M. Angew. Chem. Int. Ed., 2009, 48: 2308.
[55] Greene N T, Shimizu K D. J. Am. Chem. Soc., 2005, 127: 5695.
[56] Huang C C, Huang Y F, Cao Z H, Tan W H, Chang H T. Anal. Chem., 2005, 77: 5735.
[57] Jv Y, Li B, Cao R. Chem. Commun., 2010, 46: 8017.
[58] Li X, Wen F, Creran B, Jeong Y, Zhang X, Rotello V M. Small, 2012, 8: 3589.
[59] McCord P, Yau S L, Bard A J. Science, 1992, 257: 68.
[60] Zhang Z Y, Zhang C, Zhang X R. Analyst, 2002, 127: 792.
[61] Zhu Y F, Shi J J, Zhang Z Y, Zhang C, Zhang X R. Anal. Chem., 2002, 74: 120.
[62] Sun Z Y, Yuan H Q, Liu Z M, Han B X, Zhang X R. Adv. Mater., 2005, 17: 2993.
[63] Na N, Zhang S, Wang S, Zhang X. J. Am. Chem. Soc., 2006, 128: 14420.
[64] Wu Y, Na N, Zhang S, Wang X, Liu D, Zhang X. Anal. Chem., 2009, 81: 961.
[65] Kong H, Zhang S, Na N, Liu D, Zhang X. Analyst, 2009, 134: 2441.
[66] Kong H, Liu D, Zhang S, Zhang X. Anal. Chem., 2011, 83: 1867.
[67] Kong H, Wang H, Zhang S, Zhang X. Analyst, 2011, 136: 3643.
[68] Wang X, Na N, Zhang S, Wu Y, Zhang X. J. Am. Chem. Soc., 2007, 129: 6062.
[69] Na N, Zhang S, Wang X, Zhang X. Anal. Chem., 2009, 81: 2092.
[70] Wu L, Zhang Y, Zhang S, Zhang X. Anal. Methods, 2012, 4: 2218.
[71] Hierlemann A, Gutierrez-Osuna R. Chem. Rev., 2008, 108: 563.
[72] Schmittel M, Lin H W. Angew. Chem. Int. Ed., 2007, 46: 893.
[73] Liu D, Liu M, Liu G, Zhang S, Wu Y, Zhang X. Anal. Chem., 2010, 82: 66.
[74] Wu P, Miao L N, Wang H F, Shao X G, Yan X P. Angew. Chem. Int. Ed., 2011, 50: 8118.
[75] Lu Y, Kong H, Wen F, Zhang S, Zhang X. Chem. Commun., 2013, 49: 81.
[76] Chen J L, Yan X P, Meng K, Wang S F. Anal. Chem., 2011, 83: 8787.
[77] Jung J H, Cheon D S, Liu F, Lee K B, Seo T S. Angew. Chem. Int. Ed., 2010, 49: 5708.
[78] Chen J L, Yan X P. Chem. Commun., 2011, 47: 3135.
[79] Mei Q, Zhang K, Guan G, Liu B, Wang S, Zhang Z. Chem. Commun., 2010, 46: 7319.
[80] Song Y, Qu K, Zhao C, Ren J, Qu X. Adv. Mater., 2010, 22: 2206.
[81] Xu Y, Sheng K, Li C, Shi G. ACS Nano, 2010, 4: 4324.
[82] Xu Y, Wu Q, Sun Y, Bai H, Shi G. ACS Nano, 2010, 4: 7358.

[1] 刘峻, 叶代勇. 抗病毒涂层[J]. 化学进展, 2023, 35(3): 496-508.
[2] 赖燕琴, 谢振达, 付曼琳, 陈暄, 周戚, 胡金锋. 基于1,8-萘酰亚胺的多分析物荧光探针的构建和应用[J]. 化学进展, 2022, 34(9): 2024-2034.
[3] 于兰, 薛沛然, 李欢欢, 陶冶, 陈润锋, 黄维. 圆偏振发光性质的热活化延迟荧光材料及电致发光器件[J]. 化学进展, 2022, 34(9): 1996-2011.
[4] 李立清, 郑明豪, 江丹丹, 曹舒心, 刘昆明, 刘晋彪. 基于邻苯二胺氧化反应的生物分子比色/荧光探针[J]. 化学进展, 2022, 34(8): 1815-1830.
[5] 周宇航, 丁莎, 夏勇, 刘跃军. 荧光探针在半胱氨酸检测的应用[J]. 化学进展, 2022, 34(8): 1831-1862.
[6] 陆峰, 赵婷, 孙晓军, 范曲立, 黄维. 近红外二区发光稀土纳米材料的设计及生物成像应用[J]. 化学进展, 2022, 34(6): 1348-1358.
[7] 周晋, 陈鹏鹏. 二维纳米材料的改性及其环境污染物治理方面的应用[J]. 化学进展, 2022, 34(6): 1414-1430.
[8] 颜范勇, 臧悦言, 章宇扬, 李想, 王瑞杰, 卢贞彤. 检测谷胱甘肽的荧光探针[J]. 化学进展, 2022, 34(5): 1136-1152.
[9] 赵惠, 胡文博, 范曲立. 双光子荧光探针在生物传感中的应用[J]. 化学进展, 2022, 34(4): 815-823.
[10] 田浩, 李子木, 汪长征, 许萍, 徐守芳. 分子印迹荧光传感构建及应用[J]. 化学进展, 2022, 34(3): 593-608.
[11] 张婷婷, 洪兴枝, 高慧, 任颖, 贾建峰, 武海顺. 基于铜金属有机配合物的热活化延迟荧光材料[J]. 化学进展, 2022, 34(2): 411-433.
[12] 李彬, 于颖, 幸国香, 邢金峰, 刘万兴, 张天永. 手性无机纳米材料圆偏振发光的研究进展[J]. 化学进展, 2022, 34(11): 2340-2350.
[13] 郑明心, 谭臻至, 袁金颖. 光响应Janus粒子体系的构建与应用[J]. 化学进展, 2022, 34(11): 2476-2488.
[14] 漆晨阳, 涂晶. 无抗生素纳米抗菌剂:现状、挑战与展望[J]. 化学进展, 2022, 34(11): 2540-2560.
[15] 张业文, 杨青青, 周策峰, 李平, 陈润锋. 热激活延迟荧光材料的光物理行为及性能预测[J]. 化学进展, 2022, 34(10): 2146-2158.