English
新闻公告
More
化学进展 2014, Vol. 26 Issue (05): 820-833 DOI: 10.7536/PC131145 前一篇   后一篇

• 综述与评论 •

石墨烯及其复合材料在样品前处理中的应用

韩强1,2, 王宗花*2, 张晓琼1, 丁明玉*1   

  1. 1. 清华大学化学系 北京 100084;
    2. 青岛大学纤维新材料与现代纺织实验室 国家重点实验室培育基地 青岛 266071
  • 收稿日期:2013-11-01 修回日期:2013-12-01 出版日期:2014-05-15 发布日期:2014-03-13
  • 通讯作者: 丁明玉,e-mail:dingmy@mail.tsinghua.edu.cn;王宗花,e-mail:wangzonghua@qdu.edu.cn E-mail:dingmy@mail.tsinghua.edu.cn;wangzonghua@qdu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 21075074,21275082,81102411);青岛市自然科学基金项目(No. 13-1-4-128-jch,13-1-4-202-jch);山东省自然科学基金项目(No. ZR2011BZ004,ZR2011BQ005);日本科学促进协会和中国国家自然科学基金中日合作与交流项目(No. 21111140014);生命分析化学国家重点实验室开放基金(No. SKLACLS1110)及国家重点基础研究发展计划(973)项目(No. 2012CB722705)资助

Graphene and Its Composites in Sample Preparation

Han Qiang1,2, Wang Zonghua*2, Zhang Xiaoqiong1, Ding Mingyu*1   

  1. 1. Department of Chemistry, Tsinghua University, Beijing 100084, China;
    2. Laboratory of Fiber Materials and Modern Textile, the Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071, China
  • Received:2013-11-01 Revised:2013-12-01 Online:2014-05-15 Published:2014-03-13
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No.21075074,21275082, 81102411), the Natural Science Foundation of Qingdao (No.13-1-4-128-jch, 13-1-4-202-jch),the Natural Science Foundation of Shandong (No.ZR2011BZ004, ZR2011BQ005), JSPS and NSFC under the Japan-China Scientific Cooperation Program (No. 21111140014), the State Key Laboratory of Analytical Chemistry for Life Science (No. SKLACLS1110) and the National Basic Research Program of China(973 Program, Grant No. 2012CB722705)

样品前处理新技术与方法研究是现代分析化学的重要研究课题与发展方向之一。固相萃取是目前应用最为广泛的样品前处理技术,其技术核心是吸附材料,因此开发新型吸附材料是样品前处理领域的研究热点。石墨烯是一种新型碳纳米材料,由于其良好的物理化学性质,在短短几年内迅速成为众多学科的研究热点。其高比表面积、良好的化学稳定性和热稳定性使之在分离科学领域得到广泛的应用。本文系统综述了石墨烯及其复合材料在样品前处理中的应用研究,主要包括其作为固定相在固相萃取、固相微萃取、磁固相萃取等技术在环境、食品、生物等样品前处理中的应用。

Sample preparation procedure is crucial for the sensitivity, selectivity and accuracy of the quantitative analysis. The exploration and study of new technologies and methods in sample preparation have become important subject and direction in current analytical chemistry owing to its significance. Sorption-based extraction techniques are currently the most widely applied sample preparation techniques. The core component of the sorption-based extraction techniques is adsorbent material, which dominates the selectivity and sensitivity of the method. Therefore, the development of new adsorbent materials is a hot research topic in sample preparation. As a novel class of carbonaceous nanomaterials, graphene has attracted considerable interest in many subjects due to its excellent physical and chemical properties. Remarkably, the superior merits of graphene, for instance, large specific surface area, good thermal and chemical stability, entirely lead to its numerous applications in separation science. This article focuses on the application of graphene and its composites in many sample preparation technologies (including solid-phase extraction, solid-phase microextraction, magnetic solid-phase extraction and other technologies) in order to monitor the trace substances in different matrices (such as environmental, food, biological samples and so on). Finally the existing problem of graphene in sample preparation is summarized, and the possible challenges and future perspectives in this field are also described.

Contents
1 Introduction
2 Graphene and its composites in sample preparation
2.1 Graphene and its composites in solid-phase extraction
2.2 Graphene and its composites in solid-phase microextraction
2.3 Graphene and its composites in magnetic solid-phase extraction
2.4 Graphene and its composites in sample preparation technologies
3 Conclusions and outlook

中图分类号: 

()

[1] Scida K, Stege P W, Haby G, Messina G A, García C D. Anal. Chim. Acta, 2011, 691: 6.
[2] Zhang B T, Zheng X, Li H F, Lin J M. Anal. Chim. Acta, 2013, 784: 1.
[3] Tian J, Xu J, Zhu F, Lu T, Su C, Ouyang G. J. Chromatogr. A, 2013, 1300: 2.
[4] Pyrzynska K. TrAC Trends Anal. Chem., 2013, 43: 100.
[5] Cai Y, Jiang G, Liu J, Zhou Q. Anal. Chem., 2003, 75: 2517.
[6] Herrera-Herrera A V, González-Curbelo M Á, Hernández-Borges J, Rodríguez-Delgado M Á. Anal. Chim. Acta, 2012, 734: 1.
[7] Ravelo-Pérez L M, Herrera-Herrera A V, Hernández-Borges J, Rodríguez-Delgado M Á. J. Chromatogr. A, 2010, 1217: 2618.
[8] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306: 666.
[9] Geim A K, Novoselov K S. Nat. Mater., 2007, 6: 183.
[10] Geim A K. Science, 2009, 324: 1530.
[11] Liu Q, Shi J, Zeng L, Wang T, Cai Y, Jiang G. J. Chromatogr. A, 2011, 1218: 197.
[12] Liu Q, Shi J, Sun J, Wang T, Zeng L, Jiang G. Angew. Chem., 2011, 123: 6035.
[13] Luo Y B, Zhu G-T, Li X S, Yuan B F, Feng Y Q. J. Chromatogr. A, 2013, 1299: 10.
[14] Yu Y, Wu L. Anal. Bioanal. Chem., 2013, 405: 4913.
[15] Wang Z, Han Q, Xia J, Xia L, Ding M, Tang J. J. Sep. Sci., 2013, 36: 1834.
[16] Huang K J, Jing Q S, Wei C Y, Wu Y Y. Spectrochim. Acta Part A, 2011, 79: 1860.
[17] Huang K J, Yu S, Li J, Wu Z W, Wei C Y. Microchim. Acta, 2012, 176: 327.
[18] Liu J W, Zhang Q, Chen X W, Wang J H. Chem. Eur. J., 2011, 17: 4864.
[19] Wu J, Chen L, Mao P, Lu Y, Wang H. J. Sep. Sci., 2012, 35: 3586.
[20] Wang Z, Cui H, Xia J, Han Q, Lv N, Gao J, Guo X, Zhang F, Ma J, Su G. Food Anal. Methods, 2013, 6: 1537.
[21] Han Q, Wang Z, Xia J, Xia L, Chen S, Zhang X, Ding M. J. Sep. Sci., 2013, 36: 3586.
[22] Han Q, Wang Z, Xia J, Zhang X, Wang H, Ding M. J. Sep. Sci., 2014, 37(1/2): 99.
[23] Chen L, Lu Y, Li S, Lin X, Xu Z, Dai Z. Food Chem., 2013, 141: 1383.
[24] Ye N, Shi P, Wang Q, Li J. Chromatographia, 2013, 76: 553.
[25] Chen L, Zhou T, Zhang Y, Lu Y. Anal. Methods, 2013, 5: 4363.
[26] Wu J, Qian Y, Zhang C, Zheng T, Chen L, Lu Y, Wang H. Food Anal. Methods, 2013, 6: 1448.
[27] Ye N, Shi P, Li J, Wang Q. Anal. Lett., 2013, 46: 1991.
[28] Sitko R, Zawisza B, Malicka E. Trends Anal. Chem., 2012, 37: 22.
[29] Latorre C H, Méndez J Á, García J B, Martín S G, Crecente R M P. Anal. Chim. Acta, 2012, 749: 16.
[30] Zhao G, Li J, Ren X, Chen C, Wang X. Environ. Sci. Technol., 2011, 45: 10454.
[31] Li J, Zhang S, Chen C, Zhao G, Yang X, Li J, Wang X. ACS Appl. Mater. Inter., 2012, 4: 4991.
[32] Fan L, Luo C, Sun M, Qiu H. J. Mater. Chem., 2012, 22: 24577.
[33] Wang Y, Gao S, Zang X, Li J, Ma J. Anal. Chim. Acta, 2012, 716: 112.
[34] Chang Q, Song S, Wang Y, Li J, Ma J. Anal. Methods, 2012, 4: 1110.
[35] Wang Y K, Gao S T, Ma J J, Li J C. J. Chin. Chem. Soc. 2012, 59: 1468.
[36] Wang Y, Ke X, Zhou X, Li J, Ma J. J. Saudi Chem. Soc., 2012, DOI:10.1016/j.jscs.2012.10.004
[37] Karimi M, Aboufazeli F, Zhad H, Sadeghi O, Najafi E. Food Anal. Methods, 2014, 7(3):669.
[38] Zhang J, Cheng R, Tong S, Gu X, Quan X, Liu Y, Jia Q, Jia J. Talanta, 2011, 86: 114.
[39] 谷晓稳(Gu X W), 吕学举(Lu X J), 贾琼(Jia Q), 周伟红(Zhou W H), 刘云凌(Liu Y L). 分析化学(Chin. J. Anal. Chem.), 2013, 41: 417.
[40] Huang K J, Li J, Liu Y M, Wang L. J. Sep. Sci., 2013, 36: 789.
[41] Tabani H, Fakhari A R, Shahsavani A, Behbahani M, Salarian M, Bagheri A, Nojavan S. J. Chromatogr. A, 2013, 1300: 227.
[42] Li J, Su Q, Li K Y, Sun C F, Zhang W B. Food Chem., 2013, 141: 3714.
[43] Wang Y L, Gao Y L, Wang P P, Shang H, Pan S Y, Li X J. Talanta, 2013, 115: 920.
[44] Sarafraz-Yazdi A, Vatani H. J. Chromatogr. A, 2013, 1300: 104.
[45] Chen J, Zou J, Zeng J, Song X, Ji J, Wang Y, Ha J, Chen X. Anal. Chim. Acta, 2010, 678: 44.
[46] Zhao G, Song S, Wang C, Wu Q, Wang Z. Anal. Methods, 2011, 3: 2929.
[47] Wu Q, Feng C, Zhao G, Wang C, Wang Z. J. Sep. Sci., 2012, 35: 193.
[48] Zhang S, Du Z, Li G. Anal. Chem., 2011, 83: 7531.
[49] Zhang H, Lee H K. J. Chromatogr. A, 2011, 1218: 4509.
[50] Zhang H, Lee H K. Anal. Chim. Acta, 2012, 742: 67.
[51] Ponnusamy V K, Jen J F. J. Chromatogr. A, 2011, 1218: 6861.
[52] Zou J, Song X, Ji J, Xu W, Chen J, Jiang Y, Wang Y, Chen X. J. Sep. Sci., 2011, 34: 2765.
[53] Xu L, Feng J, Li J, Liu X, Jiang S. J. Sep. Sci., 2012, 35: 93.
[54] Xu L, Feng J, Liang X, Li J, Jiang S. J. Sep. Sci., 2012, 35: 1531.
[55] Luo Y B, Yuan B F, Yu Q W, Feng Y Q. J. Chromatogr. A, 2012, 1268: 9.
[56] Zhang S, Du Z, Li G. J. Chromatogr. A, 2012, 1260: 1.
[57] Zhang S, Du Z, Li G. Talanta, 2013, 115: 32.
[58] Ke Y, Zhu F, Zeng F, Luan T, Su C, Ouyang G. J.f Chromatogr. A, 2013, 1300: 187.
[59] Zhang M, Earhart C, Ooi C, Wilson R, Tang M, Wang S. Nano Res., 2013, 6: 745.
[60] Zhang F, Braun G B, Pallaoro A, Zhang Y, Shi Y, Cui D, Moskovits M, Zhao D, Stucky G D. Nano Lett., 2011, 12: 61.
[61] Xu Y, Wang E. Electrochim. Acta, 2012, 84: 62.
[62] Ansari S A, Husain Q. Biotechnol. Adv., 2012, 30: 512.
[63] Zhang X, Niu H, Pan Y, Shi Y, Cai Y. Anal. Chem., 2010, 82: 2363.
[64] Zhang S, Niu H, Cai Y, Shi Y. Anal. Chim. Acta, 2010, 665: 167.
[65] Niu H, Zhang S, Zhang X, Cai Y. ACS Appl. Mater. Inter., 2010, 2: 1157.
[66] Zhao Q, Wei F, Luo Y B, Ding J, Xiao N, Feng Y Q. J. Agric. Food Chem., 2011, 59: 12794.
[67] Ding J, Gao Q, Li X S, Huang W, Shi Z G, Feng Y Q. J. Sep. Sci., 2011, 34: 2498.
[68] Gao Q, Luo D, Ding J, Feng Y Q. J. Chromatogr. A, 2010, 1217: 5602.
[69] Wu Q, Zhao G, Feng C, Wang C, Wang Z. J. Chromatogr. A, 2011, 1218: 7936.
[70] Zhao G, Song S, Wang C, Wu Q, Wang Z. Anal. Chim. Acta, 2011, 708: 155.
[71] Wu Q, Liu M, Ma X, Wang W, Wang C, Zang X, Wang Z. Microchim. Acta, 2012, 177: 23.
[72] Wang W, Li Y, Wu Q, Wang C, Zang X, Wang Z. Anal. Methods, 2012, 4: 766.
[73] Wang W, Ma X, Wu Q, Wang C, Zang X, Wang Z. J. Sep. Sci., 2012, 35: 2266.
[74] Wang L, Zang X, Chang Q, Zhang G, Wang C, Wang Z. Food Anal. Methods, 2014, 7(2): 318.
[75] Li Z, Bai S, Hou M, Wang C, Wang Z. Anal. Lett., 2012, 46: 1012.
[76] 白沙沙(Bai S S), 李芝(Li Z), 臧晓欢(Zang X H), 王春(Wang C), 王志(Wang Z). 分析化学(Chin. J. Anal. Chem.), 2013, 41: 1177.
[77] Luo Y B, Shi Z G, Gao Q, Feng Y Q. J. Chromatogr. A, 2011, 1218: 1353.
[78] Han Q, Wang Z, Xia J, Chen S, Zhang X, Ding M. Talanta, 2012, 101: 388.
[79] Liu Q, Shi J, Wang T, Guo F, Liu L, Jiang G. J. Chromatogr. A, 2012, 1257: 1.
[80] Wang W, Ma R, Wu Q, Wang C, Wang Z. J. Chromatogr. A, 2013, 1293: 20.
[81] Wang W, Ma R, Wu Q, Wang C, Wang Z. Talanta, 2013, 109: 133.
[82] Sun M, Ma X, Wang J, Wang W, Wu Q, Wang C, Wang Z. J. Sep. Sci., 2013, 36: 1478.
[83] Hou M, Zang X, Wang C, Wang Z. J. Sep. Sci., 2013, 36: 3242.
[84] Ma X, Wang J, Sun M, Wang W, Wu Q, Wang C, Wang Z. Anal. Methods, 2013, 5: 2809.
[85] Tian M, Feng W, Ye J, Jia Q. Anal. Methods, 2013, 5: 3984.
[86] Karamani A A, Douvalis A P, Stalikas C D. J. Chromatogr. A, 2013, 1271: 1.
[87] Cao X, Chen J, Ye X, Zhang F, Shen L, Mo W. J. Sep. Sci., 2013, 36: 3579.
[88] Luo Y B, Cheng J S, Ma Q, Feng Y Q, Li J H. Anal. Methods, 2011, 3: 92.
[89] Liu Q, Shi J, Sun J, Wang T, Zeng L, Zhu N, Jiang G. Anal. Chim. Acta, 2011, 708: 61.
[90] Zhang H, Low W P, Lee H K. J. Chromatogr. A, 2012, 1233: 16.
[91] Tong S, Liu Q, Li Y, Zhou W, Jia Q, Duan T. J. Chromatogr. A, 2012, 1253: 22.
[92] Tong S, Zhou X, Zhou C, Li Y, Li W, Zhou W, Jia Q. Analyst, 2013, 138: 1549.
[93] Wu X, Zhang H, Meng L, Liu X, Ma Y. Chromatographia, 2012, 75: 1177.
[94] Guan W, Li Z, Zhang H, Hong H, Rebeyev N, Ye Y, Ma Y. J. Chromatogr. A, 2013, 1286: 1.
[95] Wu X, Hong H, Liu X, Guan W, Meng L, Ye Y, Ma Y. Sci. Total Environ., 2013, 444: 224.
[96] Sun M, Tang R, Wu Q, Wang C, Wang Z. Anal. Methods, 2013, 5: 5694.
[97] Zhang W, Zhang J, Bao T, Zhou W, Meng J, Chen Z. Anal. Chem., 2013, 85: 6846.
[98] Wang M M, Yan X P. Anal. Chem., 2011, 84: 39.
[99] Qu Q, Gu C, Hu X. Anal. Chem., 2012, 84: 8880.
[100] Liu X, Liu X, Li M, Guo L, Yang L. J. Chromatogr. A, 2013, 1277: 93.
[101] Xu Y Y, Niu X Y, Dong Y L, Zhang H G, Li X, Chen H L, Chen X G. J. Chromatogr. A, 2013, 1284: 180.
[102] Liang X, Liu S, Song X, Zhu Y, Jiang S. Analyst, 2012, 137: 5237.
[103] Zhang X, Chen S, Han Q, Ding M. J. Chromatogr. A, 2013, 1307: 135.

[1] 李婧, 朱伟钢, 胡文平. 基于有机复合材料的近红外和短波红外光探测器[J]. 化学进展, 2023, 35(1): 119-134.
[2] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[3] 张永, 张辉, 张逸, 高蕾, 卢建臣, 蔡金明. 表面合成异质原子掺杂的石墨烯纳米带[J]. 化学进展, 2023, 35(1): 105-118.
[4] 蒋峰景, 宋涵晨. 石墨基液流电池复合双极板[J]. 化学进展, 2022, 34(6): 1290-1297.
[5] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[6] 姜鸿基, 王美丽, 卢志炜, 叶尚辉, 董晓臣. 石墨烯基人工智能柔性传感器[J]. 化学进展, 2022, 34(5): 1166-1180.
[7] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[8] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.
[9] 张辉, 熊玮, 卢建臣, 蔡金明. 超高真空下纳米石墨烯磁性及调控[J]. 化学进展, 2022, 34(3): 557-567.
[10] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[11] 李金召, 李政, 庄旭品, 巩继贤, 李秋瑾, 张健飞. 纤维素纳米晶体的制备及其在复合材料中的应用[J]. 化学进展, 2021, 33(8): 1293-1310.
[12] 向笑笑, 田晓雯, 刘会娥, 陈爽, 朱亚男, 薄玉琴. 石墨烯基气凝胶小球的可控制备[J]. 化学进展, 2021, 33(7): 1092-1099.
[13] 吴磊, 刘利会, 陈淑芬. 基于碳基透明电极的柔性有机电致发光二极管[J]. 化学进展, 2021, 33(5): 802-817.
[14] 朱彬彬, 郑晓慧, 杨光, 曾旭, 邱伟, 徐斌. 氧化石墨烯分离膜机械性能调控[J]. 化学进展, 2021, 33(4): 670-677.
[15] 吕苏叶, 邹亮, 管寿梁, 李红变. 石墨烯在神经电信号检测中的应用[J]. 化学进展, 2021, 33(4): 568-580.