English
新闻公告
More
化学进展 2014, Vol. 26 Issue (01): 110-124 DOI: 10.7536/PC130735 前一篇   后一篇

• 综述与评论 •

端基功能化聚烯烃的合成与应用

张勇杰1,2, 李化毅*1, 董金勇*1, 胡友良1   

  1. 1. 中国科学院化学研究所   分子科学中心 中国科学院工程塑料重点实验室 北京 100190;
    2. 中国科学院大学 北京 100049
  • 收稿日期:2013-07-01 修回日期:2013-08-01 出版日期:2014-01-15 发布日期:2013-11-08
  • 通讯作者: 李化毅,e-mail:lihuayi@iccas.ac.cn;董金勇e-mail:jydong@iccas.ac.cn E-mail:lihuayi@iccas.ac.cn;jydong@iccas.ac.cn
  • 基金资助:

    国家自然科学基金项目(No.51343006)资助

Synthesis and Applications of Chain End Functionalized Polyolefins

Zhang Yongjie1,2, Li Huayi*1, Dong Jinyong*1, Hu Youliang1   

  1. 1. Center for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2013-07-01 Revised:2013-08-01 Online:2014-01-15 Published:2013-11-08
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 51343006)

端基功能化聚烯烃(Cef-PO)在聚烯烃改性和构筑复杂结构聚合物方面有着重要应用。可通过控制烯烃配位聚合过程中的自发链转移反应,得到端基不饱和聚烯烃;或通过引入硼烷、磷烷、苯乙烯及其衍生物/氢气等链转移剂得到不同反应性基团封端的聚烯烃;再经进一步基团转化反应,得到多种不同性能的Cef-PO。另外,活性配位聚合过程中,通过对活性增长聚烯烃链选择性封端处理,或使用功能化的催化剂,也可以用来制备Cef-PO。通过配位链转移聚合,即聚烯烃链在催化剂金属中心和烷基金属链转移剂之间快速可逆链转移的聚合过程,可以直接得到具有高度反应活性的碳-金属键封端的聚烯烃,经化学转化得到Cef-PO。此外,叶立德活性聚合、共轭二烯烃的阴离子活性聚合和环烯烃的开环易位聚合也可以用来制备Cef-PO。向其他聚合方式(活性自由基聚合、活性阴离子聚合等)的转换及与点击化学的结合是Cef-PO应用的明显特点。Cef-PO的应用包括作为聚合物的改性剂以及用于合成具有复杂结构的聚合物。

Chain end functionalized polyolefins(Cef-POs) are of great importance in macromolecular design and polyolefin modifications. By utilizing self-induced chain transfer reactions (to β -H, e.g.) or using chain transfer agents such as borane, phosphine and styrene (and its derivatives)/H2 in olefin coordination polymerization, unsaturated bond and reactive group terminated polyolefins can be obtained, respectively. Successive chemical modification of chain-end group results in various Cef-POs. Given the status of "one polymer chain per catalyst" in living coordination polymerization of olefin, Cef-POs can also be obtained by end-capping living chains and/or applying functionalized living catalysts. The problem of low catalyst efficiency encountered in living coordination polymerization can be well solved by coordinative chain transfer polymerization (CCTP), a process involving rapid and reversible chain transfer reactions between the catalyst (active species) and the chain transfer agent (usually in the form of a main group metal alkyl). CCTP generates polyolefin capped by carbon-metal bond, which is highly reactive and can be modified into versatile terminal groups. In addition, living polymerization of Ylides, living anionic polymerization of butadiene and ring-opening metathesis polymerization of cycloolefine are alternative approaches to synthesize (analogues of) Cef-PEs. The applications of Cef-POs, featured by transformation reaction from metallocene to other polymerization (living anionic polymerization, "controlled/living" radical polymerization, ring-opening polymerization, etc.) and combination with click chemistry, include two main aspects: polymer modification and synthesis of topological polymer.

Contents
1 Introduction
2 Synthesis of Cef-PO via chain transfer reaction
2.1 Without CTA: synthesis and modification of chain end unsaturated PO
2.2 Using one CTA: in situ polyolefin chain end functionalization with heteroatoms
2.3 Using two CTA: consecutive chain transfer reactions
3 Synthesis of cef-PO via living polymerization
3.1 Living anionic polymerization
3.2 Living coordination polymerization
3.3 Living polymerization of Ylides
4 Synthesis of Cef-PO via CCTP
4.1 Ethylene
4.2 Propylene
5 Conclusion and outlook

中图分类号: 

()

[1] Pasquini N, Addeo A. Polypropylene Handbook. Cincinnati: Hanser, 2005.
[2] Peacock A J. Handbook of Polyethylene: Structures, Properties and Applications, NY: Marcel Dekker, 2000.
[3] Kaminsky W. Macromol. Chem. Phys., 2008, 209: 459.
[4] 胡友良 (Hu Y L), 乔金梁 (Qiao J L), 吕立新 (Lü L X), 聚烯烃功能化及改性: 科学与技术 (Functionalization and Modification of Polyolefins: Science and Technology). 北京: 化学工业出版社 (Beijing: Chemical Industry Press), 2006.
[5] Zhao Y, Wang L, Xiao A, Yu H. Prog. Polym. Sci., 2010, 35: 1195.
[6] Dong J Y, Hu Y L. Coord. Chem. Rev., 2006, 250: 47.
[7] Amin S B, Marks T J. Angew. Chem. Int. Ed., 2008, 47: 2006.
[8] Chung T C. Prog. Polym. Sci., 2002, 27: 39.
[9] Lopez R G, D'Agosto F, Boisson C. Prog. Polym. Sci., 2007, 32: 419.
[10] Franssen N M G, Reek J N H, de Bruin B. Chem. Soc. Rev., 2013, 42: 5809.
[11] Mazzolini J, Espinosa E, D'Agosto F, Boisson C. Polym. Chem., 2010, 1: 793.
[12] Valente A, Mortreux A, Visseaux M, Zinck P. Chem. Rev., 2013, 113: 3836.
[13] 陈健壮(Chen J Z), 崔崑(Cui K), 张淑媛(Zhang S Y), 马志(Ma Z). 化学进展 (Progress in Chemistry), 2008, 20: 1740.
[14] Kempe R. Chem. Eur. J., 2007, 13: 2764.
[15] Janiak C. Coord. Chem. Rev., 2006, 250: 66.
[16] Resconi L, Cavallo L, Fait A, Piemontesi F. Chem. Rev., 2000, 100: 1253.
[17] Britovsek G J P, Cohen S A, Gibson V C, van Meurs M. J. Am. Chem. Soc., 2004, 126: 10701.
[18] Shiono T, Soga K. Macromolecules, 1992, 25: 3356.
[19] Shiono T, Soga K. Makromo. Chem., Rapid Commun., 1992, 13: 371.
[20] Shiono T, Akino Y, Soga K. Macromolecules, 1994, 27: 6229.
[21] Dix A, Ptacek S, Poser S, Arnold M. Macromol. Sym., 2006, 236: 186.
[22] Kaneko H, Kojoh S I, Kawahara N, Matsuo S, Matsugi T, Kashiwa N. J. Polym. Sci., Part A: Polym. Chem., 2005, 43: 5103.
[23] Chung T C, Lu H L, Janvikul W. Polymer, 1997, 38: 1495.
[24] Lu B, Chung T C. Macromolecules, 1998, 31: 5943.
[25] Lu B, Chung T C. Macromolecules, 1999, 32: 2525.
[26] Eshuis J J W, Tan Y Y, Teuben J H, Renkema J. J. Mol. Catal., 1990, 62: 277.
[27] Bunel B, Burger B J, Bercaw J E. J. Am. Chem. Soc., 1988, 110: 976.
[28] Resconi L, Piemontesi F, Franciscono G, Abis L, Fiorani T. J. Am. Chem. Soc., 1992, 114: 1025.
[29] Lin W F, Tsai J C. J. Polym. Sci., Part A: Polym. Chem., 2008, 46: 2167.
[30] Inoue Y, Matyjaszewski K. J. Polym. Sci. Part A: Polym. Chem., 2004, 42: 496.
[31] Sainath A V S, Isokawa M, Suzuki M, Ishii S, Matsuura S, Nagai N, Fujita T. Macromolecules, 2009, 42: 4356.
[32] Matoishi K, Nakai K, Nagai N, Terao H, Fujita T. Catal. Today, 2011, 164: 2.
[33] Matoishi K, Nakatsuka S, Nakai K, Isokawa M, Nagai N, Fujita T. Chem. Lett., 2010, 39: 1028.
[34] Zhang Y J, Li H Y, Dong J Y, Hu Y L. Polym. Chem., 2014, 5: 105.
[35] Anderson-Wile A M, Coates G W, Auriemma F, De Rosa C, Silvestre A. Macromolecules, 2012, 45: 7863.
[36] Binder W H, Sachsenhofer R. Macromol. Rapid Commun., 2007, 28: 15.
[37] Iha R K, Wooley K L, Nyström A M, D. Burke J, Kade M J, Hawker C J. Chem. Rev., 2009, 109: 5620.
[38] Kolb H C, Finn M G, Sharpless K B. Angew. Chem. Int. Ed., 2001, 40: 2004.
[39] Mazzolini J, Boyron O, Monteil V, Gigmes D, Bertin D, D'Agosto F, Boisson C. Macromolecules, 2011, 44: 3381.
[40] Xu G, Chung T C. J. Am. Chem. Soc., 1999, 121: 6763.
[41] Chung T C, Xu G, Lu Y Y, Hu Y L. Macromolecules, 2001, 34: 8040.
[42] Lin W T, Niu H, Chung T C, Dong J Y. J. Polym. Sci., Part A: Polym. Chem., 2010, 48: 3534.
[43] Lin W T, Dong J Y, Chung T C. Macromolecules, 2008, 41: 8452.
[44] Fan G, Dong J Y. J. Mol. Catal. A: Chem., 2005, 236: 246.
[45] Yi Q, Fan G, Wen X, Dong J Y, Han C C. Macromol. React. Eng., 2009, 3: 91.
[46] Tzeng F Y, Lin M C, Wu J Y, Kuo J C, Tsai J C, Hsiao M S, Chen H L, Cheng S Z D. Macromolecules, 2009, 42: 3073.
[47] Kuo J C, Lin W F, Yu C H, Tsai J C, Wang T C, Chung T M, Ho R M. Macromolecules, 2008, 41: 7967.
[48] Ringelberg S N, Meetsma A, Hessen B, Teuben J H. J. Am. Chem. Soc., 1999, 121: 6082.
[49] Kawaoka A M, Marks T J. J. Am. Chem. Soc., 2005, 127: 6311.
[50] Kawaoka A M, Marks T J. J. Am. Chem. Soc., 2004, 126: 12764.
[51] Amin S B, Marks T J. J. Am. Chem. Soc., 2007, 129: 10102.
[52] Bielawski C W, Grubbs R H. Prog. Polym. Sci. 2007, 32: 1.
[53] Pitet L M, Hillmyer M A. Macromolecules, 2011, 44: 2378.
[54] Chung T C, Dong J Y. J. Am. Chem. Soc., 2001, 123: 4871.
[55] Huang H, Niu H, Dong J Y. J. Polym. Sci., Part A: Polym. Chem., 2010, 48: 5783.
[56] Huang H, Cao C, Niu H, Dong J Y. J. Polym. Sci., Part A: Polym. Chem., 2010, 48: 3709.
[57] Hsiao T J, Tsai J C. J. Polym. Sci., Part A: Polym. Chem., 2010, 48: 1690.
[58] Lee J Y, Tsai J C. J. Polym. Sci., Part A: Polym. Chem., 2011, 49: 3739.
[59] Dong J Y, Wang Z M, Hong H, Chung T C. Macromolecules, 2002, 35: 9352.
[60] Fan G, Dong J Y, Wang Z, Chung T C. J. Polym. Sci. Part A: Polym. Chem., 2006, 44: 539.
[61] Huang H, Niu H, Dong J Y. J. Polym. Sci., Part A: Polym. Chem., 2011, 49: 2734.
[62] Huang H, Niu H, Dong J Y. J. Polym. Sci., Part A: Polym. Chem., 2011, 49: 2222.
[63] Huang H, Niu H, Dong J Y. Macromolecules, 2010, 43: 8331.
[64] Zhang C, Niu H, Dong J Y. Appl. Organomet. Chem., 2011, 25: 632.
[65] Domski G J, Rose J M, Coates G W, Bolig A D, Brookhart M. Prog. Polym. Sci., 2007, 32: 30.
[66] Liu P, Landry E, Ye Z, Joly H, Wang W J, Li B G. Macromolecules, 2011, 44: 4125.
[67] Zhang K, Ye Z, Subramanian R. Macromolecules, 2008, 41: 640.
[68] Gottfried A C, Brookhart M. Macromolecules, 2003, 36: 3085.
[69] Makio H, Fujita T. Macromol. Rapid Commun., 2007, 28: 698.
[70] Quirk R P, Lee B. Polym. Int., 1992, 27: 359.
[71] Jayaraman R B, Facinelli J V, Riffle J S, George S E. J. Polym. Sci. Part A: Polym. Chem., 1996, 34: 1543.
[72] Yin L, Hillmyer M A. Macromolecules, 2011, 44: 3021.
[73] Yin L, Lodge T P, Hillmyer M A. Macromolecules, 2012, 45: 9460.
[74] Coates G W, Hustad P D, Reinartz S. Angew. Chem. Int. Ed., 2002, 41: 2236.
[75] Sakuma A, Weiser M S, Fujita T. Polym. J., 2007, 39: 193.
[76] Doi Y, Hizal G, Soga K. Makromol. Chem., 1987, 188: 1273.
[77] Doi Y, Ueki S, Keii T. Macromolecules, 1979, 12: 814.
[78] Doi Y, Suzuki S, Soga K. Macromolecules, 1986, 19: 2896.
[79] Doi Y, Keii T, Chromatography/Foams/Copolymers, Berlin/Heidelberg: Springer, 1986, . 201.
[80] Fukui Y, Murata M. Macromol. Chem. Phys., 2001, 202: 1430.
[81] Li S, Ye Z. Macromol. Chem. Phys., 2010, 211: 1917.
[82] Wang W J, Liu P, Li B G, Zhu S. J. Polym. Sci., Part A: Polym. Chem., 2010, 48: 3024.
[83] Shea K J, Walker J W, Zhu H, Paz M, Greaves J. J. Am. Chem. Soc., 1997, 119: 9049.
[84] Busch B B, Paz M M, Shea K J, Staiger C L, Stoddard J M, Walker J R, Zhou X Z, Zhu H. J. Am. Chem. Soc., 2002, 124: 3636.
[85] Wagner C E, Rodriguez A A, Shea K J. Macromolecules, 2005, 38: 7286.
[86] Luo J, Shea K J. Acc. Chem. Res., 2010, 43: 1420.
[87] Zhou X Z, Shea K J. J. Am. Chem. Soc., 2000, 122: 11515.
[88] Shea K J, Busch B B, Paz M M. Angew. Chem. Int. Ed., 1998, 37: 1391.
[89] Chen J Z, Zhao Q L, Shi L P, Huang J, Li G Y, Zhang S Y, Ma Z. J. Polym. Sci. Part A: Polym. Chem., 2009, 47: 5671.
[90] Chen J Z, Cui K, Zhang S Y, Xie P, Zhao Q L, Huang J, Shi L P, Li G Y, Ma Z. Macromol. Rapid Commun., 2009, 30: 532.
[91] Li Q Z, Zhang G Y, Chen J Z, Zhao Q L, Lu H C, Huang J, Wei L H, D'Agosto F, Boisson C, Ma Z. J. Polym. Sci. Part A: Polym. Chem., 2011, 49: 511.
[92] Yuan C, Lu H C, Li Q Z, Yang S, Zhao Q L, Huang J, Wei L H, Ma Z. J. Polym. Sci. Part A: Polym. Chem., 2012, 50: 2398.
[93] Sita L R. Angew. Chem. Int. Ed., 2009, 48: 2464.
[94] Ziegler K. Angew. Chem., 1952, 64: 323.
[95] Pelletier J F, Mortreux A, Olonde X, Bujadoux K. Angew. Chem. Int. Ed., 1996, 35: 1854.
[96] Chenal T, Olonde X, Pelletier J F, Bujadoux K, Mortreux A. Polymer, 2007, 48: 1844.
[97] Kretschmer W P, Meetsma A, Hessen B, Schmalz T, Qayyum S, Kempe R. Chem. Eur. J., 2006, 12: 8969.
[98] Kretschmer W P, Bauer T, Hessen B, Kempe R. Dalton Trans., 2010, 39: 6847.
[99] Pillai S K T, Kretschmer W P, Trebbin M, Förster S, Kempe R. Chem. Eur. J., 2012, 18: 13974.
[100] Britovsek G J P, Cohen S A, Gibson V C, Maddox P J, van Meurs M. Angew. Chem. Int. Ed., 2002, 41: 489.
[101] Kaneyoshi H, Inoue Y, Matyjaszewski K. Macromolecules, 2005, 38: 5425.
[102] Briquel R, Mazzolini J, Le Bris T, Boyron O, Boisson F, Delolme F, D'Agosto F, Boisson C, Spitz R. Angew. Chem. Int. Ed., 2008, 47: 9311.
[103] Mazzolini J, Espinosa E, D'Agosto F, Boisson C. Polym. Chem., 2010, 1: 1838.
[104] Espinosa E, Charleux B, D'Agosto F, Boisson C, Tripathy R, Faust R, Soulié-Ziakovic C. Macromolecules, 2013, 46: 3417.
[105] Unterlass M M, Espinosa E, Boisson F, D'Agosto F, Boisson C, Ariga K, Khalakhan I, Charvet R, Hill J P. Chem. Commun., 2011, 47: 7057.
[106] Damiron D, Mazzolini J, Cousin F, Boisson C, D'Agosto F, Drockenmuller E. Polym. Chem., 2012, 3: 1838.
[107] Bieligmeyer M, Taheri S M, German I, Boisson C, Probst C, Milius W, Altstdt V, Breu J, Schmidt H W, D'Agosto F, Förster S. J. Am. Chem. Soc., 2012, 134: 18157.
[108] German I, Kelhifi W, Norsic S, Boisson C, D'Agosto F. Angew. Chem. Int. Ed., 2013, 52: 3438.
[109] Kade M J, Burke D J, Hawker C J. J. Polym. Sci., Part A: Polym. Chem., 2010, 1: 743.
[110] Mazzolini J, Mokthari I, Briquel R, Boyron O, Delolme F, Monteil V, Bertin D, Gigmes D, D'Agosto F, Boisson C. Macromolecules, 2010, 43: 7495.
[111] Mazzolini J, Boyron O, Monteil V, D'Agosto F, Boisson C, Sanders G C, Heuts J P A, Duchateau R, Gigmes D, Bertin D. Polym. Chem., 2012, 3: 2383.
[112] Espinosa E, Glassner M, Boisson C, Barner-Kowollik C, D'Agosto F. Macromol. Rapid Commun., 2011, 32: 1447.
[113] Li T, Wang W J, Liu R, Liang W H, Zhao G F, Li Z, Wu Q, Zhu F M. Macromolecules, 2009, 42: 3804.
[114] Liu R, Li Z, Yuan D, Meng C, Wu Q, Zhu F M. Polymer, 2011, 52: 356.
[115] Li Z, Liu R, Mai B, Wang W, Wu Q, Liang G, Gao H, Zhu F M. Polymer, 2013, 54: 1663.
[116] Zhao Y, Shi X, Gao H, Zhang L, Zhu F M, Wu Q. J. Mater. Chem., 2012, 22: 5737.
[117] Makio H, Ochiai T, Mohri J I, Takeda K, Shimazaki T, Usui Y, Matsuura S, Fujita T. J. Am. Chem. Soc., 2013, 135: 8177.
[118] Zhang W, Sita L R. J. Am. Chem. Soc., 2007, 130: 442.
[119] Zhang W, Wei J, Sita L R. Macromolecules, 2008, 41: 7829., 2008, 41:7967-7977.
[48] Ringelberg S N, Meetsma A, Hessen B, Teuben J H. J. Am. Chem. Soc., 1999, 121:6082-6083.
[49] Kawaoka A M, Marks T J. J. Am. Chem. Soc., 2005, 127:6311-6324.
[50] Kawaoka A M, Marks T J. J. Am. Chem. Soc., 2004, 126:12764-12765.
[51] Amin S B, Marks T J. J. Am. Chem. Soc., 2007, 129:10102-10103.
[52] Bielawski C W, Grubbs R H. Prog. Polym. Sci. 2007, 32:1-29.
[53] Pitet L M, Hillmyer M A. Macromolecules, 2011, 44:2378-2381.
[54] Chung T C, Dong J-Y. J. Am. Chem. Soc., 2001, 123:4871-4876.
[55] Huang H, Niu H, Dong J-Y. J. Polym. Sci., Part A: Polym. Chem., 2010, 48:5783-5789.
[56] Huang H, Cao C, Niu H, Dong J-Y. J. Polym. Sci., Part A: Polym. Chem., 2010, 48:3709-3713.
[57] Hsiao T J, Tsai J C. J. Polym. Sci., Part A: Polym. Chem., 2010, 48:1690-1698.
[58] Lee J Y, Tsai J C. J. Polym. Sci., Part A: Polym. Chem., 2011, 49:3739-3750.
[59] Dong J-Y, Wang Z M, Hong H, Chung T C. Macromolecules, 2002, 35:9352-9359.
[60] Fan G, Dong J-Y, Wang Z, Chung T C. J. Polym. Sci. Part A: Polym. Chem., 2006, 44:539-548.
[61] Huang H, Niu H, Dong J-Y. J. Polym. Sci., Part A: Polym. Chem., 2011, 49:2734-2745.
[62] Huang H, Niu H, Dong J-Y. J. Polym. Sci., Part A: Polym. Chem., 2011, 49:2222-2232.
[63] Huang H, Niu H, Dong J-Y. Macromolecules, 2010, 43:8331-8335.
[64] Zhang C, Niu H, Dong J-Y. Appl. Organomet. Chem., 2011, 25:632-637.
[65] Domski G J, Rose J M, Coates G W, Bolig A D, Brookhart M. Prog. Polym. Sci., 2007, 32:30-92.
[66] Liu P, Landry E, Ye Z, Joly H, Wang W J, Li B-G. Macromolecules, 2011, 44:4125-4139.
[67] Zhang K, Ye Z, Subramanian R. Macromolecules, 2008, 41:640-649.
[68] Gottfried A C, Brookhart M. Macromolecules, 2003, 36:3085-3100.
[69] Makio H, Fujita T. Macromol. Rapid Commun., 2007, 28:698-703.
[70] Quirk R P, Lee B. Polym. Int. 1992, 27:359-367.
[71] Jayaraman R B, Facinelli J V, Riffle J S, George S E. J. Polym. Sci., Part A: Polym. Chem., 1996, 34:1543-1552.
[72] Yin L, Hillmyer M A. Macromolecules, 2011, 44:3021-3028.
[73] Yin L, Lodge T P, Hillmyer M A. Macromolecules, 2012, 45:9460-9467.
[74] Coates G W, Hustad P D, Reinartz S. Angew. Chem. Int. Ed., 2002, 41:2236-2257.
[75] Sakuma A, Weiser M-S, Fujita T. Polym. J., 2007, 39:193-207.
[76] Doi Y, Hizal G, Soga K. Makromol. Chem., 1987, 188:1273-1279.
[77] Doi Y, Ueki S, Keii T. Macromolecules, 1979, 12:814-819.
[78] Doi Y, Suzuki S, Soga K. Macromolecules, 1986, 19:2896-2900.
[79] Doi Y, Keii T, Chromatography/Foams/Copolymers, Berlin/Heidelberg: Springer, 1986,.201-248.
[80] Fukui Y, Murata M. Macromol. Chem. Phys., 2001, 202:1430-1434.
[81] Li S, Ye Z. Macromol. Chem. Phys., 2010, 211:1917-1924.
[82] Wang W-J, Liu P, Li B-G, Zhu S. J. Polym. Sci., Part A: Polym. Chem., 2010, 48:3024-3032.
[83] Shea K J, Walker J W, Zhu H, Paz M, Greaves J. J. Am. Chem. Soc., 1997, 119:9049-9050.
[84] Busch B B, Paz M M, Shea K J, Staiger C L, Stoddard J M, Walker J R, Zhou X-Z, Zhu H. J. Am. Chem. Soc., 2002, 124:3636-3646.
[85] Wagner C E, Rodriguez A A, Shea K J. Macromolecules, 2005, 38:7286-7291.
[86] Luo J, Shea K J. Acc. Chem. Res., 2010, 43:1420-1433.
[87] Zhou X-Z, Shea K J. J. Am. Chem. Soc., 2000, 122:11515-11516.
[88] Shea K J, Busch B B, Paz M M. Angew. Chem. Int. Ed., 1998, 37:1391-1393.
[89] Chen J Z, Zhao Q L, Shi L P, Huang J, Li G Y, Zhang S Y, Ma Z. J. Polym. Sci., Part A: Polym. Chem., 2009, 47:5671-5681.
[90] Chen J Z, Cui K, Zhang S Y, Xie P, Zhao Q L, Huang J, Shi L P, Li G Y, Ma Z. Macromol. Rapid Commun., 2009, 30:532-538.
[91] Li Q-Z, Zhang G Y, Chen J Z, Zhao Q L, Lu H C, Huang J, Wei L H, D'Agosto F, Boisson C, Ma Z. J. Polym. Sci., Part A: Polym. Chem., 2011, 49:511-517.
[92] Yuan C, Lu H-C, Li Q Z, Yang S, Zhao Q L, Huang J, Wei L H, Ma Z. J. Polym. Sci., Part A: Polym. Chem., 2012, 50:2398-2405.
[93] Sita L. R. Angew. Chem. Int. Ed., 2009, 48:2464-2472.
[94] Ziegler K. Angew. Chem., 1952, 64:323-329.
[95] Pelletier J F, Mortreux A, Olonde X, Bujadoux K. Angew. Chem. Int. Ed., 1996, 35:1854-1856.
[96] Chenal T, Olonde X, Pelletier J F, Bujadoux K, Mortreux A. Polymer, 2007, 48:1844-1856.
[97] Kretschmer W P, Meetsma A, Hessen B, Schmalz T, Qayyum S, Kempe R. Chem. Eur. J., 2006, 12:8969-8978.
[98] Kretschmer W P, Bauer T, Hessen B, Kempe R. Dalton Trans., 2010, 39:6847-6852.
[99] Pillai S K T, Kretschmer W P, Trebbin M, Förster S, Kempe R. Chem. Eur. J., 2012, 18:13974-13978.
[100] Britovsek G J P, Cohen S A, Gibson V C, Maddox P J, van Meurs M. Angew. Chem. Int. Ed., 2002, 41:489-491.
[101] Kaneyoshi H, Inoue Y, Matyjaszewski K. Macromolecules, 2005, 38:5425-5435.
[102] Briquel R, Mazzolini J, Le Bris T, Boyron O, Boisson F, Delolme F, D'Agosto F, Boisson C, Spitz R. Angew. Chem. Int. Ed., 2008, 47:9311-9313.
[103] Mazzolini J, Espinosa E, D'Agosto F, Boisson C. Polym. Chem., 2010, 1:1838-1845.
[104] Espinosa E, Charleux B, D'Agosto F, Boisson C, Tripathy R, Faust R, Soulié-Ziakovic C. Macromolecules, 2013, 46:3417-3424.
[105] Unterlass M M, Espinosa E, Boisson F, D'Agosto F, Boisson C, Ariga K, Khalakhan I, Charvet R, Hill J P. Chem. Commun., 2011, 47:7057-7059.
[106] Damiron D, Mazzolini J, Cousin F, Boisson C, D'Agosto F, Drockenmuller E. Polym. Chem., 2012, 3:1838-1845.
[107] Bieligmeyer M, Taheri S M, German I, Boisson C, Probst C, Milius W, Altstädt V, Breu J, Schmidt H W, D'Agosto F, Förster S. J. Am. Chem. Soc., 2012, 134:18157-18160.
[108] German I, Kelhifi W, Norsic S, Boisson C, D'Agosto F. Angew. Chem. Int. Ed., 2013, 52:3438-3441.
[109] Kade M J, Burke D J, C. J. Hawker. J. Polym. Sci., Part A: Polym. Chem., 2010, 1:743-750.
[110] Mazzolini J, Mokthari I, Briquel R, Boyron O, Delolme F, Monteil V, Bertin D, Gigmes D, D'Agosto F, Boisson C. Macromolecules, 2010, 43:7495-7503.
[111] Mazzolini J, Boyron O, Monteil V, D'Agosto F, Boisson C, Sanders G C, Heuts J P A, Duchateau R, Gigmes D, Bertin D. Polym. Chem., 2012, 3:2383-2392.
[112] Espinosa E, Glassner M, Boisson C, Barner-Kowollik C, D'Agosto F. Macromol. Rapid Commun., 2011, 32:1447-1453.
[113] Li T, Wang W J, Liu R, Liang W H, Zhao G F, Li Z, Wu Q, Zhu F M. Macromolecules, 2009, 42:3804-3810.
[114] Liu R, Li Z, Yuan D, Meng C, Wu Q, Zhu F M. Polymer, 2011, 52:356-362.
[115] Li Z, Liu R, Mai B, Wang W, Wu Q, Liang G, Gao H, Zhu F M. Polymer, 2013, 54:1663-1670.
[116] Zhao Y, Shi X, Gao H, Zhang L, Zhu F M, Wu Q. J. Mater. Chem., 2012, 22:5737-5745.
[117] Makio H, Ochiai T, Mohri J I, Takeda K, Shimazaki T, Usui Y, Matsuura S, Fujita T. J. Am. Chem. Soc., 2013, 135:8177-8180.
[118] Zhang W, Sita L R. J. Am. Chem. Soc., 2007, 130:442-443.
[119] Zhang W, Wei J, Sita L R. Macromolecules, 2008, 41:7829-7833.

 

[1] 张勇杰, 樊明帅, 李晓佩, 李化毅, 王书唯, 祝文亲. 含硅功能化聚烯烃:合成及应用[J]. 化学进展, 2020, 32(1): 84-92.
[2] 王惠亚, 赵立敏, 张芳, 何丹农. 高性能锂离子二次电池隔膜[J]. 化学进展, 2019, 31(9): 1251-1262.
[3] 袁世芳, 闫艺. 同核双金属烯烃聚合催化剂[J]. 化学进展, 2019, 31(12): 1737-1748.
[4] 张勇杰, 李化毅, 曲敏杰, 冯钠, 杨威, 张翀. 结构明确聚烯烃接枝共聚物:合成、结构与性能[J]. 化学进展, 2016, 28(11): 1634-1647.
[5] 张勇杰, 李化毅, 董金勇, 胡友良. 聚烯烃共价键接枝纳米材料及其聚烯烃纳米复合材料[J]. 化学进展, 2015, 27(1): 47-58.
[6] 荣雷, 宁英男, 高金苹, 毛国梁, 马志. 基于叶立德同源聚合的聚烯烃功能化研究[J]. 化学进展, 2014, 26(08): 1369-1377.
[7] 齐美洲, 傅智盛, 范志强. 茂金属催化剂的负载化[J]. 化学进展, 2014, 26(05): 737-748.
[8] 赵巧玲, 马志*. 原子力显微镜在聚烯烃研究中的应用[J]. 化学进展, 2012, (10): 2011-2018.
[9] 李启蒸, 张国艺, 袁聪, 魏柳荷, 马志. 聚烯烃/聚酯(聚醚)共聚物的合成及其应用[J]. 化学进展, 2011, 23(6): 1174-1180.
[10] 曹堃, 吴水良, 李彦, 朱方君, 姚臻. N-取代烷氧基受阻胺类阻燃剂及其在聚烯烃中的应用[J]. 化学进展, 2011, 23(6): 1189-1195.
[11] 刘虎,王文浩,胡晓熙,彭慧,易昌凤,徐祖顺. 乳液原子转移自由基聚合*[J]. 化学进展, 2009, 21(6): 1292-1298.
[12] 施信波 高海洋 伍青. 支化聚烯烃的合成研究*[J]. 化学进展, 2009, 21(12): 2651-2659.
[13] 陈健壮,崔崑,张淑媛,马志. 主链链端功能化聚烯烃的设计、合成及其应用研究新进展[J]. 化学进展, 2008, 20(11): 1740-1750.
[14] 闫强,隋晓锋,袁金颖. 活性聚合在星形聚合物合成中的应用*[J]. 化学进展, 2008, 20(10): 1562-1571.
[15] 赵群,倪沛红. pH/温度响应的两亲性嵌段共聚物的研究*[J]. 化学进展, 2006, 18(06): 768-779.
阅读次数
全文


摘要

端基功能化聚烯烃的合成与应用