English
新闻公告
More
化学进展 2013, Vol. 25 Issue (12): 2159-2168 DOI: 10.7536/PC130549 前一篇   后一篇

• 综述与评论 •

负载型催化剂用于卤代有机污染物氢解去除

张云飞1, 杨波*1, 张鸿1, 余刚2, 邓述波2, 刘剑洪1   

  1. 1. 深圳大学化学与化工学院 深圳市功能高分子重点实验室 深圳 518060;
    2. 清华大学环境学院持久性有机污染物研究中心 北京 100084
  • 收稿日期:2013-05-01 修回日期:2013-07-01 出版日期:2013-12-15 发布日期:2013-09-17
  • 通讯作者: 杨波 E-mail:boyang@szu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 21177089,11275130)和国家高技术研究发展计划(863)项目(No.2013AA062705)资助

Degradation of Halogenated Organic Contaminants with Hydrodehalogenation Using Supported Catalysts

Zhang Yunfei1, Yang Bo*1, Zhang Hong1, Yu Gang2, Deng Shubo2, Liu Jianhong1   

  1. 1. College of Chemistry and Chemical Engineering, Shenzhen Key Laboratory of Functional Polymers, Shenzhen University, Shenzhen 518060, China;
    2. POPs Research Center, School of Environment, Tsinghua University, Beijing 100084, China
  • Received:2013-05-01 Revised:2013-07-01 Online:2013-12-15 Published:2013-09-17

卤代有机污染物(halogenated organic contaminants,HOCs)具有持久性强、难生物降解的特点,排放到环境后对生态安全及人类健康造成了巨大危害,在环境领域备受关注。负载型催化剂降解HOCs的反应条件温和易行,产物低毒易于降解或可重新作为原材料使用,成为环境污染化学降解技术研究的热点。本文综述了负载型催化剂降解HOCs的种类、反应机理和各种因素的影响机制,介绍了相关研究进展并讨论分析了该技术存在的问题,并提出了该技术的发展前景及今后重点研究方向。

Due to their highly persistent and biorefractory property in environment, halogenated organic contaminants (HOCs) possess the potential risk to ecological safety and human health after released into our surroundings so that their problems have attracted much attention in the concerned researches. Reductive hydrodehalogenation (HDH) by supported catalyst provides the practicable approach to decontaminate HOCs with mild reaction conditions, which forms the low toxic products easily for biodegradation or to recycle as chemical raw materials. So it has been in the spotlight of study on chemical treatment method for environment pollution. This paper reviews the degradation categories, HDH reaction pathway of HOCs with supported catalyst as well as the influential mechanisms of various relative factors. It is also introduced for the progress on these studies and further discussions about some remaining problems in the development of the catalytic HDH technology. In addition, the future trends for this method are prospected.

Contents
1 Introduction
2 The categories and mechanisms of HOC degradation using supported catalyst
3 Influencing factors on catalytic dehalogenation
3.1 Effect of the materials used for supported catalyst
3.2 Effect of preparation techniques for support catalyst
3.3 Effect of HOC categories
3.4 Effect of solvents
3.5 Effect of pH
3.6 Effect of other relative factors
3.7 Deactivation of supported catalyst
4 Conclusions and prospect

中图分类号: 

()

[1] Ameur W B, Megdiche Y E, Eljarrat E, Hassine S B, Badreddine B, Souad T, Bèchir H, Barceló D, Driss M R. Ecotox. Environ. Safe., 2013, 88: 55—64
[2] Urbano F J, Marinas J M. J. Mol. Catal. A-Chem., 2001, 173: 329—345
[3] Munoz M, de Pedro Z M, Casas J A, Rodriguez J J. Water Res., 2013, 47: 3070—3080
[4] Alonso F, Beletskaya I P, Yus M. Chem. Rev., 2002, 102: 4009—4091
[5] 王亚韡(Wang Y W), 蔡亚岐(Cai Y Q), 江桂斌(Jiang G B). 中国科学: 化学(Scientia Sinica Chimica), 2010, 40(2): 99—123
[6] Keane M A. Green Chem., 2003, 5: 309—317
[7] Menini C, Park C, Shin E J, Tavoularis G, Keane M A. Catal. Today, 2000, 62: 355—366
[8] Kastanek F, Maleterova Y, Kastanek P, Rott J, Jiricny V, Jiratova K. Desalination, 2007, 211: 261—271
[9] Laine D F, Cheng I F. Microchem J., 2007, 85: 183—193
[10] Calvo L, Gilarranz M A, Casas J A, Mohedano A F, Rodríguez J J. J. Hazard. Mater., 2009, 161: 842—847
[11] Jovanovic G N, Plazl P ?, Sakrittichai P, Al-Khaldi K. Ind. Eng. Chem. Res., 2005, 44: 5099—5106
[12] 杨波(Yang B), 余刚(Yu G). 化学进展(Progress in Chemistry), 2009, 21(1): 217—226
[13] Zhang M, Bacik D B, Roberts C B. Water Res., 2013, 47: 3706—3715
[14] Yang B, Yu G, Huang J. Environ. Sci. Technol., 2007, 41: 7503—7508
[15] Pirkanniemi K, Sillanpää M. Chemosphere, 2002, 48: 1047—1060
[16] Mondloch J E, Bayram E, Finke R G. J. Mol. Catal. A-Chem., 2012, 355: 1—38
[17] Park C, Keane M A. J. Colloid Interface Sci., 2003, 266: 183—194
[18] Xia C H, Liu Y, Zhou S W, Yang C Y, Liu S J, Xu J, Yu J B. J. Hazard. Mater., 2009, 169: 1029—1033
[19] Álvarez-Montero M A, Gómez-Sainero L M, Martín-Martínez M, Heras F, Rodriguez J J. Appl. Catal. B-Environ., 2010, 96: 148—156
[20] Chen N, Rioux R M, Barbosa L A M M, Ribeiro F H. Langmuir, 2010, 26(21): 16615—16624
[21] Ordóñez S, Díez F V, Sastre H. Ind. Eng. Chem. Res., 2002, 41: 505—511
[22] Karpiński Z, Bonarowska M, ?omot D, ?r?bowata A, Costa P D, Rodrigues J A. Catal. Commun., 2009, 10: 1757—1761
[23] Yu H, Kennedy E M, Uddin M A, Sakata Y, Dlugogorski B Z. Ind. Eng. Chem. Res., 2005, 44: 3442—3452
[24] Murthy K V, Patterson P M, Keane M A. J. Mol. Catal. A-Chem., 2005, 225: 149—160
[25] Ding E, Jujjuri S, Sturgeon M, Shore S G, Keane M A. J. Mol. Catal. A-Chem., 2008, 294: 51—60
[26] Liu S M, Poplaukhin P, Ding E, Plecnik C E, Chen X N, Kean M A, Shore S G. J. Alloy. Compd., 2006, 418: 21—26
[27] Meshesha B T, Chimento R J, Medina F, Sueiras J E, Cesteros Y, Salagre P, Figueras F. Appl. Catal. B-Environ., 2009, 87: 70—77
[28] Ordóñez S, Sastre H, Díez F V. Appl. Catal. B-Environ., 2000, 25: 49—58
[29] Ukisu Y, Miyadera T. Appl. Catal. A-Gen., 2004, 271: 165—170
[30] Mitoma Y, Tasaka N, Takase M, Masuda T, Tashiro H, Egashira N. Environ. Sci. Technol., 2006, 40: 1849—1854
[31] Gómez-Sainero L M, Seoane X L, Arcoya A. Appl. Catal. B-Environ., 2004, 53: 101—110
[32] Cao Y C, Jiang X Z. J. Mol. Catal. A-Chem., 2005, 242: 119—128
[33] Vadlamannati L S, Kovalchuk V I, d'Itri J L. Catal. Lett., 1999, 58: 173—178
[34] Heinrichs B, Noville F, Schoebrechts J P, Pirard J P. J. Catal., 2003, 220: 215—225
[35] Piechocki W, Gryglewicz G, Gryglewicz S. J. Hazard. Mater., 2009, 163: 1397—1402
[36] Schüth C, Reinhard M. Appl. Catal. B-Environ., 1998, 18: 215—221
[37] Schüth C, Kummer N A, Weidenthaler C, Schad H. Appl. Catal. B-Environ., 2004, 52: 197—203
[38] Janiak T, B?a ejowski J. Chemosphere, 2002, 48: 1097—1102
[39] Rath D, Parida K M. Ind. Eng. Chem. Res., 2011, 50: 2839—2849
[40] Ukisu Y, Miyadera T. React. Kinet. Catal. Lett., 2006, 89(2): 341—347
[41] Sajiki H, Kume A, Hattori K, Hirota K. Tetrahedron Lett., 2002, 43: 7247—7250
[42] Corte S D, Hennebel T, Fitts J P, Sabbe T, Bliznuk V, Verschuere S, der Lelie D V, Verstraete W, Boon N. Environ. Sci. Technol., 2011, 45: 8506—8513
[43] Keane M A. J. Chem. Technol. Biotechnol., 2007, 82: 787—795
[44] Serguchev Y A, Belokopytov Y V. Kinet. Catal., 2001, 42(2): 174—181
[45] Keane M A, Murzin D Y. Ind. Eng. Chem. Eng. Sci., 2001, 56: 3185—3195
[46] Kulkarni P P, Kovalchuk V I, d'Itri J L. Appl. Catal. B-Environ., 2002, 36: 299—309
[47] Keane M A. ChemCatChem, 2011, 3: 800—821
[48] Chaplin B P, Reinhard M, Schneider W F, Schüth C, Shapley J R, Strathmann T J, Werth C J. Environ. Sci. Technol., 2012, 46: 3655—3670
[49] Conner W C, Falconer J L. Chem. Rev., 1995, 95: 759—788
[50] Yang B, Deng S B, Yu G, Zhang H, Wu J H, Zhuo Q F. J. Hazard. Mater., 2011, 189: 76—83
[51] Wang S, Yang B, Zhang T T, Yu G, Deng S B, Huang J. Ind. Eng. Chem. Res., 2010, 49: 4561—4565
[52] Li Y W, Yang R T. J. Am. Chem. Soc., 2006, 128: 8136—8137
[53] Amorim C, Keane M A. J. Hazard. Mater., 2012, 211/212: 208—217
[54] Omar S, Palomar J, Gómez-Sainero L M, Álvarez-Montero M A, Martin-Martinez M, Rodriguez J J. J. Phys. Chem. C, 2011, 115: 14180—14192
[55] Álvarez-Montero M A, Gómez-Sainero L M, Juan-Juan J, Linares-Solano A, Rodriguez J J. Chem. Eng. J., 2010, 162: 599—608
[56] Ordóñez S, Díaz E, Bueres R F, Asedegbega-Nieto E, Sastre H. J. Catal., 2010, 272: 158—168
[57] Zhou G, Chan C, Gellman A G. J. Phys. Chem. B, 1999, 103: 1134—1143
[58] Rioux R M, Thompson C D, Chen N, Ribeiro F H. Catal. Today, 2000, 62: 269—278
[59] Borovkov V Y, Lonyi F, Kovalchuk V I, d'Itri J L. J. Phys. Chem. B, 2000, 104: 5603—5609
[60] Borovkov V Y, Kulkarni P P, Kovalchuk V I, d'Itri J L. J. Phys. Chem. B, 2004, 108: 4811—4817
[61] Efremenko I. J. Mol. Catal. A-Chem., 2001, 173: 19—59
[62] Simagina V, Likholobov V, Bergeret G, Gimenez M T, Renouprez A. Appl. Catal. B-Environ., 2003, 40: 293—304
[63] Xu J, Bhattacharyya D. J. Phys. Chem. C, 2008, 112: 9133—9144
[64] Smuleac V, Bachas L, Bhattacharyya D. J. Membr. Sci., 2010, 346: 310—317
[65] Meshesha B T, Barrabés N, Llorca J, Dafinov A, Medina F, Föttinger K. Appl. Catal. A-Gen., 2013, 453: 130—141
[66] Parshetti G K, Doong R A. Chemosphere, 2012, 86: 392—399
[67] Yang B, Zhang F Z, Deng S B, Yu G, Zhang H, Xiao J Z, Shi L L, Shen J C. Chem. Eng. J., 2012, 209: 79—85
[68] Hildebrand H, Mackenzie K, Kopinke F D. Environ. Sci. Technol., 2009, 43: 3254—3259
[69] He F, Liu J C, Roberts C B, Zhao D Y. Ind. Eng. Chem. Res., 2009, 48: 6550—6557
[70] Aramendía M A, Boráu V, García I M, Jiménez C, Lafont F, Marinas A, Marinas J M, Urbano F J. J. Catal., 1999, 187: 392—399
[71] Simagina V I, Netskina O V, Tayban E S, Komova O V, Grayfer E D, Ischenko A V, Pazhetnov E M. Appl. Catal. A-Gen., 2010, 379: 87—94
[72] Yuan G, Keane M A. Appl. Catal. B-Environ., 2004, 52: 301—314
[73] Bae J W, Kim I G, Lee J S, Lee K H, Jang E J. J. Appl. Catal. A-Gen., 2003, 240: 129—142
[74] Nutt M O, Heck K N, Alvarez P, Wong M S. Appl. Catal. B-Environ., 2006, 69: 115—125
[75] Pretzer L A, Pretzer H J, Fang Y L, Zhao Z, Guo N, Wu T, Arslan I, Miller J T, Wong M S. J. Catal., 2013, 298: 206—217
[76] Shimotori T, Nuxoll E E, Cussler E L, Arnold W A. Environ. Sci. Technol., 2004, 38: 2264—2270
[77] Štěpni?ka P, Semler M, Demel J, Zukal A,?ejka J. J. Mol. Catal. A-Chem., 2011, 341: 97—102
[78] Cecilia J A, Jiménez-Morales I, Infantes-Molina A, Rodríguez-Castellón A. J. Mol. Catal. A-Chem., 2013, 368/369: 78—87
[79] Chen J X, Zhou J J, Wang R J, Zhang J Y. Ind. Eng. Chem. Res., 2009, 48: 3802—3811
[80] Elola A, Díaz E, Ordoñez S. Environ. Sci. Technol., 2009, 43: 1999—2004
[81] Feng J T, Lin Y J, Evans D G, Duan X, Li D Q. J. Catal., 2009, 266: 351—358
[82] Perego C, Villa P. Catal. Today, 1997, 34: 281—305
[83] Kim P, Kim H, Joo J B, Kim W, Song I K, Yi J. J. Mol. Catal. A-Chem., 2006, 256: 178—183
[84] Wei X, Wang A Q, Yang X F, Li L, Zhang T. Appl. Catal. B-Environ., 2012, 121/122: 105—114
[85] Barrabés N, Föttinger K, Llorca J, Dafinov A, Medina F, S J, Hardacre C, Rupprechter G. J. Phys. Chem. C, 2010, 114: 17675—17682
[86] Sen I K, Maity K, Islam S S. Carbohydr. Polym., 2013, 91: 518—528
[87] Zhou W, Wachs I E, Kiely C J. Curr. Opin. Solid State Mat. Sci., 2012, 16: 10—22
[88] Mackenzie K, Frenzel H, Kopinke F D. Appl. Catal. B-Environ., 2006, 63: 161—167
[89] Barbosa L A M M, Sautet P. J. Catal., 2002, 207: 127—138
[90] Mallick S, Rana S, Parida K. Ind. Eng. Chem. Res., 2011, 50: 12439—12448
[91] Singh U K, Vannice M A. Appl. Catal. A-Gen., 2001, 213: 1—24
[92] Zinovyev S, Shelepchikov A, Tundo P. Appl. Catal. B-Environ., 2007, 72: 289—298
[93] Ukisu Y, Miyadera T. Appl. Catal. B-Environ., 2003, 40: 141—149
[94] Ukisu Y, Miyadera T. React. Kinet. Catal. Lett., 2004, 81(2): 305—311
[95] Aramendía M A, Burch R, García I M, Marinas A, Marinas J M, Southward B W L, Urbano F J. Appl. Catal. B-Environ., 2001, 31: 163—171
[96] Vincent T, Spinelli S, Guibal E. Ind. Eng. Chem. Res., 2003, 42: 5968—5976
[97] Zhang Z, Cissoko N, Wo J J, Xu X H. J. Hazard. Mater., 2009, 165: 78—86
[98] Ordóñez S, Vivas B P, Díez F V. Appl. Catal. B-Environ., 2010, 95: 288—296
[99] van Middlesworth J M, Wood S A. Geochim. Cosmochim. Acta, 1999, 63(11/12): 1751—1765
[100] Angeles-Wedler D, Mackenzie K, Kopinke F D. Environ. Sci. Technol., 2008, 42: 5734—5739
[101] Munakata N, Reinhard M. Appl. Catal. B-Environ., 2007, 75: 1—10
[102] Chaplin B P, Shapley J R, Werth C J. Environ. Sci. Technol., 2007, 41: 5491—5497

[1] 冀豪栋, 齐娟娟, 郑茂盛, 党晨原, 陈龙, 黄韬博, 刘文. 纳米技术在水中病毒灭活中的应用:对新型冠状病毒SARS-CoV-2传播阻断的启示[J]. 化学进展, 0, (): 0-0.
[2] 丁星, 杨祥龙, 熊中亮, 陈浩, 张礼知. 铋系光催化剂去除环境污染物[J]. 化学进展, 2017, 29(9): 1115-1126.
[3] 王鹏远, 郭昌胜, 高建峰, 徐建. 石墨相氮化碳(g-C3N4)与Bi系复合光催化材料的制备及在环境中的应用[J]. 化学进展, 2017, 29(2/3): 241-251.
[4] 赵倩, 葛云丽, 纪娜, 宋春风, 马德刚, 刘庆岭. 催化氧化技术在可挥发性有机物处理的研究[J]. 化学进展, 2016, 28(12): 1847-1859.
[5] 刘莹, 何宏平, 吴德礼, 张亚雷. 非均相催化臭氧氧化反应机制[J]. 化学进展, 2016, 28(7): 1112-1120.
[6] 邓云盼, 杨波, 余刚, 卓琼芳, 邓述波, 张鸿. 金属配合物催化氢解脱卤研究[J]. 化学进展, 2016, 28(4): 564-576.
[7] 杨波, 李影影, 余刚, 邓述波, 卓琼芳, 张鸿. 物化作用氧化降解PFOA/PFOS[J]. 化学进展, 2014, 26(07): 1265-1274.
[8] 张峰振, 吴超飞, 胡芸, 韦朝海. 卤代有机污染物的光化学降解[J]. 化学进展, 2014, 26(06): 1079-1098.
[9] 冯勇, 吴德礼*, 马鲁铭. 铁氧化物催化类Fenton反应[J]. 化学进展, 2013, 25(07): 1219-1228.
[10] 吴德礼*, 傅旻瑜, 马鲁铭. 生物及化学反硝化过程中N2O的产生与控制[J]. 化学进展, 2012, (10): 2054-2061.
[11] 卓琼芳, 杨波, 邓述波, 黄俊, 王斌, 余刚. 用于有机物降解的电化学阳极材料[J]. 化学进展, 2012, 24(04): 628-636.
[12] 郭风, 朱桂茹, 高从堦. 有机-无机杂化介孔二氧化硅在环境保护中的应用[J]. 化学进展, 2011, 23(6): 1237-1250.
[13] 邱心泓 方战强. 修饰型纳米零价铁降解有机卤化物的研究*[J]. 化学进展, 2010, 22(0203): 291-297.
[14] 朱利中,陈宝梁. 膨润土吸附材料在有机污染控制中的应用*[J]. 化学进展, 2009, 21(0203): 420-429.
[15] 滕少香,盛国平,刘贤伟,王曙光,俞汉青. 芳香族硝基化合物的微生物降解[J]. 化学进展, 2009, 21(0203): 534-539.