English
新闻公告
More
化学进展 2013, Vol. 25 Issue (12): 2169-2177 DOI: 10.7536/PC130432 前一篇   后一篇

• 综述与评论 •

天然有机质介导的汞生物地球化学循环:结合作用与分子转化

阴永光1, 李雁宾2, 马旭1, 刘景富*1, 江桂斌1   

  1. 1. 中国科学院生态环境研究中心 环境化学与生态毒理学国家重点实验室 北京 100085;
    2. 中国海洋大学 化学化工学院 青岛 266100
  • 收稿日期:2013-04-01 修回日期:2013-06-01 出版日期:2013-12-15 发布日期:2013-09-17
  • 通讯作者: 刘景富 E-mail:jfliu@rcees.ac.cn
  • 基金资助:

    国家重点基础研究发展计划(973)项目(No. 2013CB430002)和国家自然科学基金项目 (No. 21120102040,20937002,21025729)资助

Role of Natural Organic Matter in the Biogeochemical Cycle of Mercury:Binding and Molecular Transformation

Yin Yongguang1, Li Yanbin2, Ma Xu1, Liu Jingfu*1, Jiang Guibin1   

  1. 1. State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;
    2. College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
  • Received:2013-04-01 Revised:2013-06-01 Online:2013-12-15 Published:2013-09-17

汞具有持久性、生物积累性及长距离传输特性,是一类重要的全球污染物。在陆地、湖泊、海洋等环境中,天然有机质是汞的重要络合配体,对汞的生物地球化学循环有重要作用,可显著影响汞的迁移、分布、生物累积与毒性。此外,天然有机质在硫化汞的分散及汞的分子转化如还原、氧化、甲基化、甲基汞的去甲基化中起着至关重要的作用。本文对天然有机质与汞的结合与分子转化的研究进展进行了总结,并提出了后续研究的重点。

Mercury is an important global pollutant, with the characteristics of persistence, bioaccumulation and long-distance transport. In the terrestrial, lakes and marine environment, natural organic matter (NOM) is important binding ligand for divalent inorganic mercury and methylmercury, which plays important roles in the biogeochemical cycling of mercury, including migration, distribution, bioaccumulation and toxicity. In addition, NOM plays crucial roles in the dispersion of HgS and molecular transformation of mercury and methylmercury, including reduction, oxidation, methylation of inorganic mercury and de-methylation of methylmercury. The research progress on the binding of mercury with NOM and its roles in the transformation of mercury is reviewed and future prospects in this field are discussed.

Contents
1 Introduction
2 Natural organic matter
3 Binding of Hg2+ and MeHg with natural organic matter
4 Molecular transformation of Hg mediated by natural organic matter
4.1 Reduction of Hg2+ mediated by natural organic matter
4.2 Oxidation of Hg0 mediated by natural organic matter
4.3 Methylation of inorganic Hg mediated by natural organic matter
4.4 Photo-demethylation of MeHg mediated by natural organic matter
5 Dispersion of HgS by natural organic matter
6 Conclusions and outlook

中图分类号: 

()

[1] Boening D W. Chemosphere, 2000, 40 (12): 1335—1351
[2] Lindqvist O, Rodhe H. Tellus B, 1985, 37 (3): 136—159
[3] Ebinghaus R, Kock H H, Temme C, Einax J W, Lowe A G, Richter A, Burrows J P, Schroeder W H. Environ. Sci. Technol., 2002, 36 (6): 1238—1244
[4] Schroeder W H, Anlauf K G, Barrie L A, Lu J Y, Steffen A, Schneeberger D R, Berg T. Nature, 1998, 394 (6691): 331—332
[5] Zhang Q, Huang J, Wang F, Mark L, Xu J, Armstrong D, Li C, Zhang Y, Kang S. Environ. Sci. Technol., 2012, 46 (10): 5404—5413
[6] Watras C J, Back R C, Halvorsen S, Hudson R J M, Morrison K A, Wente S P. Sci. Total Environ., 1998, 219 (2/3): 183—208
[7] Poissant L, Dommergue A, Ferrari C P. J. Phys. IV, 2002, 12 (10): 143—160
[8] Pacyna E G, Pacyna J M, Steenhuisen F, Wilson S. Atmos. Environ., 2006, 40 (22): 4048—4063
[9] Gilmour C C, Henry E A, Mitchell R. Environ. Sci. Technol., 1992, 26 (11): 2281—2287
[10] Fleming E J, Mack E E, Green P G, Nelson D C. Appl. Environ. Microb., 2006, 72 (1): 457—464
[11] 吴丰昌(Wu F C), 王立英(Wang L Y), 黎文(Li W), 张润宇(Zhang R Y), 傅平青(Fu P Q), 廖海清(Liao H Q), 白英臣(Bai Y C), 郭建阳(Guo J Y), 王静(Wang J). 湖泊科学(Lake Science), 2008, 20 (1): 1—12
[12] Ghabbour E, Davies G. Humic Substances: Nature's Most Versatile Materials. Taylor & Francis, 2003
[13] Kalbitz K, Solinger S, Park J H, Michalzik B, Matzner E. Soil Sci., 2000, 165 (4): 277—304
[14] Jones M N, Bryan N D. Adv. Colloid Interface Sci., 1998, 78 (1): 1—48
[15] Borch T, Kretzschmar R, Kappler A, Van Cappellen P, Ginder-Vogel M, Voegelin A, Campbell K. Environ. Sci. Technol., 2010, 44 (1): 15—23
[16] 邰超(Tai C), 李雁宾(Li Y B), 阴永光(Yin Y G), 蔡勇(Cai Y), 江桂斌(Jiang G B). 化学进展(Progress in Chemistry), 2012, 24 (7): 1388—1397
[17] Gasper J D, Aiken G R, Ryan J N. Appl. Geochem., 2007, 22 (8): 1583—1597
[18] Khwaja A R, Bloom P R, Brezonik P L. Environ. Sci. Technol., 2006, 40 (3): 844—849
[19] Dong W, Bian Y, Liang L, Gu B. Environ. Sci. Technol., 2011, 45 (8): 3576—3583
[20] Haitzer M, Aiken G R, Ryan J N. Environ. Sci. Technol., 2003, 37 (11): 2436—2441
[21] Hintelmann H, Welbourn P M, Evans R D. Water Air Soil Poll., 1995, 80 (1/4): 1031—1034
[22] Khwaja A R, Bloom P R, Brezonik P L. Environ. Sci. Technol., 2010, 44 (16): 6151—6156
[23] Karlsson T, Skyllberg U. Environ. Sci. Technol., 2003, 37 (21): 4912—4918
[24] Gismera M J, Procopio J R, Sevilla M T. Electroanalysis, 2007, 19 (10): 1055—1061
[25] do Nascimento F H, Masini J C. Talanta, 2012, 100: 57—63
[26] Han S H, Gill G A, Lehman R D, Choe K Y. Mar. Chem., 2006, 98 (2/4): 156—166
[27] Benoit J M, Mason R P, Gilmour C C, Aiken G R. Geochim. Cosmochim. Acta, 2001, 65 (24): 4445—4451
[28] Lamborg C H, Tseng C M, Fitzgerald W F, Balcom P H, Hammerschmidt C R. Environ. Sci. Technol., 2003, 37 (15): 3316—3322
[29] Lu X Q, Jaffe R. Water Res., 2001, 35 (7): 1793—1803
[30] Hintelmann H, Welbourn P M, Evans R D. Environ. Sci. Technol., 1997, 31 (2): 489—495
[31] Bai Y C, Wu F C, Liu C Q, Li W, Guo J Y, Fu P Q, Xing B S, Zheng J. Anal. Chim. Acta, 2008, 616 (1): 115—121
[32] Tipping E. Appl. Geochem., 2007, 22 (8): 1624—1635
[33] Amirbahman A, Reid A L, Haines T A, Kahl J S, Arnold C. Environ. Sci. Technol., 2002, 36 (4): 690—695
[34] Reddy M M, Aiken G R. Water Air Soil Poll., 2001, 132 (1): 89—104
[35] Miller C L, Southworth G, Brooks S, Liang L, Gu B. Environ. Sci. Technol., 2009, 43 (22): 8548—8553
[36] Haitzer M, Aiken G R, Ryan J N. Environ. Sci. Technol., 2002, 36 (16): 3564—3570
[37] Drexel R T, Haitzer M, Ryan J N, Aiken G R, Nagy K L. Environ. Sci. Technol., 2002, 36 (19): 4058—4064
[38] Hesterberg D, Chou J W, Hutchison K J, Sayers D E. Environ. Sci. Technol., 2001, 35 (13): 2741—2745
[39] Qian J, Skyllberg U, Frech W, Bleam W F, Bloom P R, Petit P E. Geochim. Cosmochim. Acta, 2002, 66 (22): 3873—3885
[40] Yoon S J, Diener L M, Bloom P R, Nater E A, Bleam W F. Geochim. Cosmochim. Acta, 2005, 69 (5): 1111—1121
[41] Yin Y J, Allen H E, Huang C P, Sparks D L, Sanders P F. Environ. Sci. Technol., 1997, 31 (2): 496—503
[42] Schuster E. Water Air Soil Poll., 1991, 56: 667—680
[43] Lee S S, Nagy K L, Park C, Fenter P. Environ. Sci. Technol., 2009, 43 (14): 5295—5300
[44] Backstrom M, Dario M, Karlsson S, Allard B. Sci. Total Environ., 2003, 304 (1/3): 257—268
[45] Liang P, Li Y C, Zhang C, Wu S C, Cui H J, Yu S, Wong M H. J. Hazard. Mater., 2013, 244: 322—328
[46] Turner A, Millward G E, Le Roux S M. Environ. Sci. Technol., 2001, 35 (23): 4648—4654
[47] Bengtsson G, Picado F. Chemosphere, 2008, 73 (4): 526—531
[48] Lindberg S E, Harriss R C. Environ. Sci. Technol., 1974, 8 (5): 459—462
[49] Aiken G R, Gilmour C C, Krabbenhoft D P, Orem W. Crit. Rev. Environ. Sci. Technol., 2011, 41: 217—248
[50] Grigal D F. J. Environ. Qual., 2003, 32 (2): 393—405
[51] Hu K L, Zhang F R, Hong L, Feng H, Li B G. Pedosphere, 2006, 16 (6): 690—698
[52] Gagnon C, Pelletier E, Mucci A. Mar. Chem., 1997, 59 (1/2): 159—176
[53] Schuster P F, Shanley J B, Marvin-Dipasquale M, Reddy M M, Aiken G R, Roth D A, Taylor H E, Krabbenhoft D P, DeWild J F. Water Air Soil Poll., 2008, 187 (1/4): 89—108
[54] Brigham M E, Wentz D A, Aiken G R, Krabbenhoft D P. Environ. Sci. Technol., 2009, 43 (8): 2720—2725
[55] Schuster P F, Striegl R G, Aiken G R, Krabbenhoft D P, Dewild J F, Butler K, Kamark B, Dornblaser M. Environ. Sci. Technol., 2011, 45 (21): 9262—9267
[56] Hill J R, O'Driscoll N J, Lean D R S. Sci. Total Environ., 2009, 408 (2): 408—414
[57] Dittman J A, Shanley J B, Driscoll C T, Aiken G R, Chalmers A T, Towse J E. Environ. Pollut., 2009, 157 (6): 1953—1956
[58] Bergamaschi B A, Krabbenhoft D P, Aiken G R, Patino E, Rumbold D G, Orem W H. Environ. Sci. Technol., 2012, 46 (3): 1371—1378
[59] Henneberry Y K, Kraus T E C, Fleck J A, Krabbenhoft D P, Bachand P M, Horwath W R. Sci. Total Environ., 2011, 409 (3): 631—637
[60] Zhong H, Wang W X. Environ. Sci. Technol., 2009, 43 (23): 8998—9003
[61] Sjoblom A, Meili M, Sundbom M. Sci. Total Environ., 2000, 261 (1—3): 115—124
[62] Gorski P R, Armstrong D E, Hurley J P, Krabbenhoft D P. Environ. Pollut., 2008, 154 (1): 116—123
[63] Pickhardt P C, Fisher N S. Environ. Sci. Technol., 2007, 41 (1): 125—131
[64] Vigneault B, Percot A, Lafleur M, Campbell P G C. Environ. Sci. Technol., 2000, 34 (18): 3907—3913
[65] Jonsson S, Skyllberg U, Nilsson M B, Westlund P-O, Shchukarev A, Lundberg E, Bjoern E. Environ. Sci. Technol., 2012, 46 (21): 11653—11659
[66] Hammerschmidt C R, Fitzgerald W F. Environ. Sci. Technol., 2004, 38 (5): 1487—1495
[67] Hammerschmidt C R, Fitzgerald W F, Balcom P H, Visscher P T. Mar. Chem., 2008, 109 (1/2): 165—182
[68] Schartup A T, Mason R P, Balcom P H, Hollweg T A, Chen C Y. Environ. Sci. Technol., 2013, 47 (2): 695—700
[69] Tsui M T K, Finlay J C. Environ. Sci. Technol., 2011, 45 (14): 5981—5987
[70] Luengen A C, Fisher N S, Bergamaschi B A. Environ. Toxicol. Chem., 2012, 31 (8): 1712—1719
[71] Ndu U, Mason R P, Zhang H, Lin S, Visscher P T. Appl. Environ. Microb., 2012, 78 (20): 7276—7282
[72] Wang R, Wang W X. Environ. Sci. Technol., 2010, 44 (20): 7964—7969
[73] Alberts J J, Takacs M, Pattanayek M. Acta Hydrochim. Hydrob., 2001, 28 (7): 428—435
[74] Klinck J, Dunbar M, Brown S, Nichols J, Winter A, Hughes C, Playle R C. Aquat. Toxicol., 2005, 72 (1/2): 161—175
[75] Gorski P R, Armstrong D E, Hurley J P, Shafer M M. Environ. Toxicol. Chem., 2006, 25 (2): 534—540
[76] Mason R P, Morel F M M, Hemond H F. Water Air Soil Poll., 1995, 80 (1/4): 775—787
[77] Poulain A J, Amyot M, Findlay D, Telor S, Barkay T, Hintelmann H. Limnol. Oceanogr., 2004, 49 (6): 2265—2275
[78] Alberts J J, Schindler J E, Miller R W, Nutter D E. Science, 1974, 184 (4139): 895—896
[79] Tseng C M, Lamborg C, Fitzgerald W F, Engstrom D R. Geochim. Cosmochim. Acta, 2004, 68 (6): 1173—1184
[80] O'Driscoll N J, Lean D R S, Loseto L L, Carignan R, Siciliano S D. Environ. Sci. Technol., 2004, 38 (9): 2664—2672
[81] Fantozzi L, Ferrara R, Frontini F P, Dini F. Mar. Chem., 2007, 107 (1): 4—12
[82] Feng X B, Yan H Y, Wang S F, Qiu G L, Tang S L, Shang L H, Dai Q J, Hou Y M. Atmos. Environ., 2004, 38 (28): 4721—4732
[83] Mauclair C, Layshock J, Carpi A. Appl. Geochem., 2008, 23 (3): 594—601
[84] Zhang Y, Chen X, Yang Y, Wang D, Liu X. J. Environ. Sci. China, 2011, 23 (6): 912—917
[85] Amyot M, Mierle G, Lean D, McQueen D J. Geochim. Cosmochim. Acta, 1997, 61 (5): 975—987
[86] Garcia E, Amyot M, Ariya P A. Geochim. Cosmochim. Acta, 2005, 69 (8): 1917—1924
[87] Allard B, Arsenie I. Water Air Soil Poll., 1991, 56: 457—464
[88] Matthiessen A. Sci. Total Environ., 1998, 213 (1/3): 177—183
[89] Deng L, Deng N, Mou L, Zhu F. J. Environ. Sci. China, 2010, 22 (1): 76—83
[90] O'Driscoll N J, Siciliano S D, Peak D, Carignan R, Lean D R S. Sci. Total Environ., 2006, 366 (2/3): 880—893
[91] Rocha J C, Sargentini E, Zara L F, Rosa A H, dos Santos A, Burba P. Talanta, 2003, 61 (5): 699—707
[92] Si L, Ariya P A. Chemosphere, 2011, 84 (8): 1079—1084
[93] Berkovic A M, Bertolotti S G, Villata L S, Gonzalez M C, Pis Diez R, Martire D O. Chemosphere, 2012, 89 (10): 1189—1194
[94] He F, Zheng W, Liang L, Gu B. Sci. Total Environ., 2012, 416: 429—435
[95] Zheng W, Hintelmann H. J. Phys. Chem. A, 2010, 114 (12): 4246—4253
[96] Zheng W, Hintelmann H. Geochim. Cosmochim. Acta, 2009, 73 (22): 6704—6715
[97] Lalonde J D, Amyot M, Orvoine J, Morel F M M, Auclair J C, Ariya P A. Environ. Sci. Technol., 2004, 38 (2): 508—514
[98] Lalonde J D, Amyot M, Kraepiel A M L, Morel F M M. Environ. Sci. Technol., 2001, 35 (7): 1367—1372
[99] Garcia E, Poulain A J, Amyot M, Ariya P A. Chemosphere, 2005, 59 (7): 977—981
[100] Struyk Z, Sposito G. Geoderma, 2001, 102 (3/4): 329—346
[101] Gu B, Bian Y, Miller C L, Dong W, Jiang X, Liang L. P. Natl. Acad. Sci. U. S. A., 2011, 108 (4): 1479—1483
[102] Zheng W, Liang L, Gu B. Environ. Sci. Technol., 2012, 46 (1): 292—299
[103] Bouffard A, Amyot M. Chemosphere, 2009, 74 (8): 1098—1103
[104] Weber J H. Chemosphere, 1993, 26 (11): 2063—2077
[105] Falter R. Chemosphere, 1999, 39 (7): 1051—1073
[106] Falter R. Chemosphere, 1999, 39 (7): 1075—1091
[107] Bloom N S, Colman J A, Barber L. Fresenius J. Anal. Chem., 1997, 358 (3): 371—377
[108] Nagase H, Ose Y, Sato T, Ishikawa T. Sci. Total Environ., 1982, 25 (2): 133—142
[109] Nagase H, Ose Y, Sato T, Ishikawa T. Sci. Total Environ., 1984, 32 (2): 147—156
[110] Weber J H, Reisinger K, Stoeppler M. Environ. Technol. Lett., 1985, 6 (5): 203—208
[111] Lee Y H, Hultberg H, Andersson I. Water Air Soil Poll., 1985, 25 (4): 391—400
[112] Siciliano S D, O'Driscoll N J, Tordon R, Hill J, Beauchamp S, Lean D R S. Environ. Sci. Technol., 2005, 39 (4): 1071—1077
[113] Guevara S R, Queimalinos C P, Dieguez M d C, Arribere M. Chemosphere, 2008, 72 (4): 578—585
[114] Lehnherr I, St Louis V L, Hintelmann H, Kirk J L. Nat. Geosci., 2011, 4 (5): 298—302
[115] Li Y, Yin Y, Liu G, Tachiev G, Roelant D, Jiang G, Cai Y. Environ. Sci. Technol., 2012, 46 (11): 5885—5893
[116] Li Y, Mao Y, Liu G, Tachiev G, Roelant D, Feng X, Cai Y. Environ. Sci. Technol., 2010, 44 (17): 6661—6666
[117] Sellers P, Kelly C A, Rudd J W M, MacHutchon A R. Nature, 1996, 380 (6576): 694—697
[118] Hammerschmidt C R, Fitzgerald W F. Environ. Sci. Technol., 2006, 40 (4): 1212—1216
[119] Hammerschmidt C R, Fitzgerald W F. Environ. Sci. Technol., 2010, 44 (16): 6138—6143
[120] Lehnherr I, Louis V L S. Environ. Sci. Technol., 2009, 43 (15): 5692—5698
[121] Suda I, Suda M, Hirayama K. Arch. Toxicol., 1993, 67 (5): 365—368
[122] Yin Y, Chen B, Mao Y, Thanh W, Liu J, Cai Y, Jiang G. Chemosphere, 2012, 88 (1): 8—16
[123] Zhang T, Hsu-Kim H. Nat. Geosci., 2010, 3 (7): 473—476
[124] Black F J, Poulin B A, Flegal A R. Geochim. Cosmochim. Acta, 2012, 84: 492—507
[125] Bergquist B A, Blum J D. Science, 2007, 318 (5849): 417—420
[126] Malinovsky D, Latruwe K, Moens L, Vanhaecke F. J. Anal. Atom. Spectrom., 2010, 25 (7): 950—956
[127] Wolfenden S, Charnock J M, Hilton J, Livens F R, Vaughan D J. Environ. Sci. Technol., 2005, 39 (17): 6644—6648
[128] Aiken G R, Hsu-Kim H, Ryan J N. Environ. Sci. Technol., 2011, 45 (8): 3196—3201
[129] Ravichandran M, Aiken G R, Ryan J N, Reddy M M. Environ. Sci. Technol., 1999, 33 (9): 1418—1423
[130] Gerbig C A, Kim C S, Stegemeier J P, Ryan J N, Aiken G R. Environ. Sci. Technol., 2011, 45 (21): 9180—9187
[131] Deonarine A, Hsu-Kim H. Environ. Sci. Technol., 2009, 43 (7): 2368—2373
[132] Ravichandran M, Aiken G R, Reddy M M, Ryan J N. Environ. Sci. Technol., 1998, 32 (21): 3305—3311
[133] Waples J S, Nagy K L, Aiken G R, Ryan J N. Geochim. Cosmochim. Acta, 2005, 69 (6): 1575—1588
[134] Graham A M, Aiken G R, Gilmour C C. Environ. Sci. Technol., 2012, 46 (5): 2715—2723
[135] Zhang T, Kim B, Leyard C, Reinsch B C, Lowry G V, Deshusses M A, Hsu-Kim H. Environ. Sci. Technol., 2012, 46 (13): 6950—6958
[136] Latch D E, McNeill K. Science, 2006, 311(5768): 1743—1747

[1] 李诗宇, 阴永光, 史建波, 江桂斌. 共价有机框架在水中二价汞吸附去除中的应用[J]. 化学进展, 2022, 34(5): 1017-1025.
[2] 陈曦, 李喆垚, 陈亚运, 陈志华, 胡艳, 刘传祥. C—H氰烷基化:导向基控制的萘酰亚胺C—H氰烷基化[J]. 化学进展, 2021, 33(11): 1947-1952.
[3] 钟来进, 唐直婕, 胡忻, 练鸿振. 大气颗粒物中有害成分的吸入生物可给性研究[J]. 化学进展, 2021, 33(10): 1766-1779.
[4] 方莹莹, 王颖, 史建波, 阴永光, 蔡勇, 江桂斌. 大气中活性气态汞的分析方法和赋存转化[J]. 化学进展, 2021, 33(1): 151-161.
[5] 袁跃华, 朱永军, 胡伟, 秦君, 田茂忠, 冯锋. 基于小分子的铜离子与汞离子双识别荧光探针[J]. 化学进展, 2019, 31(4): 550-560.
[6] 沈洋, 胡继文, 刘婷婷, 郜洪文, 胡张军. 纳米光学传感器用于检测汞离子[J]. 化学进展, 2019, 31(4): 536-549.
[7] 王训, 袁巍, 冯新斌. 森林生态系统汞的生物地球化学过程[J]. 化学进展, 2017, 29(9): 970-980.
[8] 张文博, 李芳芹, 吴江*, 李和兴*. 电厂烟气汞脱除技术[J]. 化学进展, 2017, 29(12): 1435-1445.
[9] 孙悦, 周晓馨, 楼子墨, 刘榆, 傅瑞琪, 徐新华*. 铁基纳米材料功能化及对水中汞离子的去除[J]. 化学进展, 2016, 28(8): 1156-1169.
[10] 高鹏, 高彬彬, 高建强, 张锴, 杨勇平, 陈鸿伟. 壳聚糖及其复合物对水中汞离子的脱除[J]. 化学进展, 2016, 28(12): 1834-1846.
[11] 杨引, 樊梦醒, 郭智慧, 张卉, 吴萍, 蔡称心. DNA甲基化电化学分析[J]. 化学进展, 2014, 26(12): 1977-1986.
[12] 林奇, 陈佩, 刘娟, 符永鹏, 张有明, 魏太保. 汞离子荧光、比色传感器[J]. 化学进展, 2013, 25(07): 1177-1186.
[13] 戚自松, 董亚丽, 李亚明*, 段春迎* . 过渡金属催化芳香化合物三氟甲基化反应[J]. 化学进展, 2012, 24(11): 2177-2186.
[14] 蒋国翔, 沈珍瑶, 牛军峰, 庄玲萍, 何天德. 环境中典型人工纳米颗粒物毒性效应[J]. 化学进展, 2011, 23(8): 1769-1781.
[15] 李祥子, 余锐, 魏先文. 富勒烯的全氟烷基化[J]. 化学进展, 2011, 23(6): 1148-1164.