English
新闻公告
More
化学进展 2013, Vol. 25 Issue (10): 1781-1794 DOI: 10.7536/PC130119 前一篇   后一篇

• 综述与评论 •

趋磁细菌纳米磁小体的研究与应用

潘宇1,2, 历娜1, 周润宏1, 赵敏1   

  1. 1. 东北林业大学生命科学学院 哈尔滨150040;
    2. 黑龙江科技大学环境与化工学院 哈尔滨150022
  • 收稿日期:2013-01-01 修回日期:2013-04-01 出版日期:2013-11-12 发布日期:2013-07-18
  • 通讯作者: 赵敏 E-mail:82191513@163.com
  • 基金资助:

    国家林业局引进国际先进农业(含农、林、水)科学计划(948)项目(No.2012-4-03)、中央高校专项基金项目(No.DL12CA08)和国家自然科学基金项目(No.31170553, 30671702,30170775)资助

Nano-Magnetosomes in Magnetotactic Bacteria

Pan Yu1,2, Li Na1, Zhou Runhong1, Zhao Min1   

  1. 1. College of Life Sciences,Northeast Forestry University,Harbin 150040,China;
    2. College of Environment and Chemical Engineering,Heilongjiang University of Science and Technology,Harbin 150022,China
  • Received:2013-01-01 Revised:2013-04-01 Online:2013-11-12 Published:2013-07-18

趋磁细菌是一类能够沿着磁场方向运动的细菌,其共同特征是能在细胞内形成有生物膜包裹的纳米级单畴磁性晶体颗粒——磁小体。磁小体的主要化学成分是磁铁矿Fe3O4,与人工合成的磁性纳米晶体相比具有化学纯度高、粒度细而均一以及生物相容性好等优点,作为新一代纳米磁性材料,在生物化学、磁性材料、临床医药和废水处理等许多领域具有巨大的潜在应用价值。磁小体在细胞内的形成过程受到严格的生物化学机制的控制,包括铁离子的吸收、磁小体膜的形成、铁离子的转运及膜内受控的Fe3O4的生物矿化四个步骤。本文从趋磁细菌细胞内磁小体的化学组成和结构,细胞内磁小体的合成条件和生化反应机制,磁小体的磁学性质、分离纯化方法以及纳米磁小体的应用等方面综述了相关的研究进展,提出了磁小体合成机理及实践应用中尚待解决的问题,展望了未来研究磁小体及其应用的发展方向。

Magnetotactic bacteria can orient and migrate along geomagnetic field lines because of their intracellular single-domain magnetic nano-crystal particles with biomembrane bounded,which are referred as magnetosomes. Magnetite Fe3O4 is the main chemical component of magnetosomes characterized by the high chemical purity, fine grain size uniformity, and good biocompatibility, which can be used as a new kind of nano-magnetic materials applied in many fields of biochemistry, magnetic materials, clinical medicine and wastewater treatment, and so on. Magnetosome formation is the mineralization process under strict biochemical mechanisms control, including four steps: iron accumulation, membrane formation, transportation and controlled biomineralization of Fe3O4. In this paper, the characteristics of magnetotactic bacteria, chemical composition, structure, synthesis conditions and mechanisms, magnetism, separation and purification, the applications of the nano-magnetic particles are summarized and reviewed. The main problems to be resolved and the prospects of magnetosomes are also presented.

Contents
1 Introduction
2 Magnetotactic bacteria
3 Chemical composition and morphology of magnetosomes
3.1 Chemical composition of magnetosomes
3.2 Morphology of magnetosomes
4 Synthetic conditions and biochemical mechanisms of magnetosomes
4.1 Synthetic conditions of magnetosomes
4.2 Synthetic processes and mechanisms of magnetosomes
5 Magnetic properties of magnetosomes in magnetotactic bacteria
5.1 Magnetic properties of magnetosomes
5.2 Effect of chains arrangement on magnetic properties
5.3 Effect of morphology and chemical composition on magnetic properties
6 Separation and purification of magnetosomes
7 Applications of magnetosomes in ralated fields
7.1 Application in sewage treatment
7.2 Application in medical treatment
7.3 Application in sensing technology
8 Biological and geoscience significance of biomineralization
9 Conclusions

中图分类号: 

()
[1] Blakemore R P. Science, 1975, 190: 377—379
[2] Bazylinski D A, Heywood B R, Mann S. Nature, 1993, 366: 218
[3] Bazylinski D A, Frankel R B, Jannasch H W. Nature, 1988, 334: 518—519
[4] Blakemore R P, Frankel R B, Kalmijn A J. Nature, 1980, 236: 384—385
[5] DeLong E F, Frankel R B, Bazylinski D A. Science, 1993, 259: 803—806
[6] Dunin-Borkowski R E, McCartney M R, Frankel R B, Bazylinski D A, Posfai M, Buseck P R. Science, 1998, 282: 1868—1870
[7] Farina M, Esquivel D M S, Lins de Barros H G P. Nature, 1990, 343: 256—258
[8] Fassbinder J W E, Stanjek H, Vali H. Nature, 1990, 343: 161—163
[9] Frankel R B, Blakemore R P, Wolfe R S. Science, 1979, 203: 1355—1356
[10] Frankel R B, Blakemore R P, Torres de Araujo F F, Esquivel D M S, Danon J. Science, 1981, 212: 1269—1270
[11] Glasauer S, Langley S, Beveridge T J. Science, 2002, 295: 117—119
[12] Lovley D R, Stolz J F, Nord G L, Phillips E J P. Nature, 1987, 330: 252—254
[13] Maher B A, Taylor R M. Nature, 1988, 336: 368—370
[14] Mandernack K W, Bazylinski D A, Shanks W C, Bullen T D. Science, 1999, 285: 1892—1896
[15] Mann S, Frankel R B, Blakemore R P. Nature, 1984, 310: 405—407
[16] Mann S, Sparks N H C, Frankel R B, Bazylinski D A, Jannasch H W. Nature, 1990, 343: 258—260
[17] Matsuda T, Endo J, Osakabe N, Tonomura A, Arii T. Nature, 1983, 302: 411—412
[18] Petersen N, Dobeneck T V, Vali H. Nature, 1986, 320: 611—615
[19] Pósfai M, Buseck P R, Bazylinski D A, Frankel R B. Science, 1998, 280: 880—883
[20] Sakaguchi T, Burgess J G, Matsunaga T. Nature, 1993, 365: 47—49
[21] Stolz J F, Chang S B R, Kirschvink J L. Nature, 1986, 321: 849—850
[22] Scheffel A, Gruska M, Faivre D, Linaroudis A, Plitzko J M, Schüler D. Nature, 2006, 440: 110—114
[23] Komeili A, Li Z, Newman D K, Jensen G J. Science, 2006, 311: 242—246
[24] PanY X, Petersen N, Winklhofer M, DavilaA F, Liu Q S, Friderichs T, Hanzlik M, Zhu R X. Earth Planet Sci. Lett., 2005, 232(1/2): 109—123
[25] Okamura Y, Takeyama H, Matsunaga T. Applied Biochemistry and Biotechnology, 2000, 84/86: 441—446
[26] Yavuz C T, Prakash A, Mayo J T, Colvin V L. Chem. Eng. Sci., 2009, (64): 2510—2521
[27] Knopp D, Tang D, Niessner R. Anal. Chim. Acta, 2009, 647: 14—30
[28] Bazylinski D A, Frankel R B. Nature Reviews Microbiology, 2004, 2: 217—230
[29] Alphandery E, Lijeour L, Lalatonne Y, Motte L. Sensors and Actuators B: Chemical, 2010, 147: 786—790
[30] Aguilar-Arteaga K, Rodriguez J A, Barrado E. Analytica Chimica Acta, 2010, 674: 157—165
[31] Matsunaga T, Suzuki T, Tanaka M, Arakaki A. Trends Biotechol., 2007, 25: 182—188
[32] Dutz S, Clement J H, Eberbeck D, Gelbrich T, Hergt R, Muller R, Wotschadlo J, Zeisberger M. J. Magnetism and Magnetic Materials, 2009, 321: 1501—1504
[33] Ambashta R D, Sillanpaa M. Journal of Hazardous Materials, 2010, 180: 38—49
[34] Benzerara K, Miot J, Morin G, Ona-Nguema G, Skouri-Panet F, Ferard C. C. R. Geoscience, 2011, 343: 160—167
[35] Li J H, Pan Y X, Liu Q S, Zhang K, Menguy N, Che R, Qin H, Lin W, Wu W, Petersen N, Yang X. Earth and Planetary Science Letters, 2010, 293: 368—376
[36] Gould J L, Kirschvink J L. Deffeyes K S. Science, 1978, 201: 1026—1028
[37] Walcott C, Gould J L, Kirschvink J L. Science, 1979, 205: 1207—1029
[38] Torres de Araujo F F, Pires M A, Frankel R B, Bicudo C E M. Biophys. J., 1986, 50: 385—378
[39] Kirschvink S. Nature, 1997, 390: 339—340
[40] Kirschvink J L, Kobayashi-Kirschvink A, Woodford B J. Proc. Natl. Acad. Sci. U. S. A., 1992, 89: 7683—7687
[41] Perez-Gonzalez T, Jimenez-Lopez C, Neal A, Rull-Perez F, Rodriguez-Navarro A, Fernandez-Vivas A, Pareja E. Geochimica. Cosmochimica Acta, 2010(74): 967—979
[42] Blackmore R P. Ann. Rev. Microbiol., 1982, 36: 217—238
[43] Blakemore R P, Maratea D, Wolfe R S. J. Bacteriol., 1979, 140: 720—729
[44] Schüler D, Kohler M. Zentralblatt für Mikrobiologie, 1992, 147, 150—151
[45] Matsunaga T, Sakaguchi T, Tadokoro F. Applied and Microbiology Biotechnology, 1991, 35: 651—655
[46] Schüler D, Spring S, Bazylinski DA. System Appl. Microbiol., 1999, 22: 466—471
[47] Moench T T. Antonie Van Leeuwenhoek, 1988, 54: 483—496
[48] Meldrum F C, Mann S, Heywood B R, Frankel R B, Bazylinski D A. Proceedings of the Royal Society of London Series B-Biological Science, 1993, 251: 237—242
[49] Fan G C, Li R S, Li X G, Gao M Y, Jia R F. Chinese Science Bullentin, 1996, 41(11): 944—948
[50] 卫杨保(Wei Y B), 张洪霞(Zhang H X), 姜伟(Jiang W). 武汉大学学报(自然科学版)(Wuhan University Journal of Natural Sciences), 1994, 6: 115—120
[51] 吴小铃(Wu X L), 都有为(Du Y W). 南京大学学报(自然科学版) (Nanjing University Journal of Natural Sciences), 1999, 35(6): 745—749
[52] 范国昌(Fan G C), 钱凯先(Qian K X), 李荣森(Li R S), 贾蓉芬(Jia R F). 生物学杂志(Journal of Biology), 1998a, 15(5): 11—14
[53] 贾蓉芬(Jia R F), 彭先芝(Peng X Z), 高梅影(Gao M Y), 戴顺英(Dai S Y). 第四纪研究(Quaternary Sciences), 2003, 23(5): 537—545
[54] 高梅影(Gao M Y), 戴顺英(Dai S Y), 刘艳丽(Liu Y L), 彭可凡(Peng K F), 贾蓉芬(Jia R F). 应用与环境生物学报(Chinese Journal of Applied and Environmental Biology), 2004, 10(2): 194—196
[55] Liu Y L, Gao M Y, Dai S Y, Peng K F, Jia R F. Materials Science & Engineering: C, 2006, 26: 597—601
[56] Li W, Yu L, Zhou P, Zhu M. Arch. Microbiol, 2007, 188: 97—102
[57] Lefèvre C T, Bernadac A, Yu-Zhang K, Pradel N, Wu L F. Environ. Microbiol., 2009, 11: 1646—1657
[58] Zhu K, Pan H, Li J, Zhang K, Zhang S, Zhang W, Zhou K, Yue H, Pan Y X, Xiao T, Wu L F. Research in Microbiology, 2010, 161: 276—283
[59] Petermann H, Bleil U. Earth and Planetary Scienc Letters, 1993, 117: 223—228
[60] Simmons S L, Bazylinski DA, Edwards K J. Science, 2006, 311: 371—374
[61] Farina M, Lins de Barros H G P, Esquivel D M S, Danon J. Biol. Cell, 1983, 48: 85—88
[62] Rogers F G, Blakemore R P, Blakemore N A, Frankel R B, Bazylinski D A, Maratea D, Rodgers C. Arch. Microbiol., 1990, 154: 18—22
[63] Bazylinski D A, Frankel R B, Heywood B R, Mann S, King J W, Donaghay P L, Hanson A K. Appl. Environ. Microbiol., 1995, 61: 3232—3239
[64] Bazylinski D A, Frankel R B. Environmental Microbe-Mineral Interactions. Lovley D R, Ed. Washington: ASM Press, 2000. 109—144
[65] Patricia M D, James J D, Steve W. The Mineralogical Society of America, 2003, 217—249
[66] Heywood B R, Bazylinski D A, Garratt-Reed A J. Naturwiss., 1990, 77: 536—538
[67] Towe K M, Moench T T. Earth Planet Sci. Lett., 1981, 52: 213—220
[68] Bazylinski D A, Garratt-Reed A J, Abedi A, Frankel R B. Arch. Microbiol., 1993, 160: 35—42
[69] Gorby Y A. Nature, 1998, 386: 108—121
[70] Arakaki A, Webb J, Matsunaga T. J. Biol. Chem., 2003, 278: 8745—8750
[71] Lin W, Pan Y X. Appl. Environ. Microbiol., 2009(75): 4046 —4052
[72] Devouard B, Posfai M, Hua X, Bazylinski D A, Frankel R B, Buseck P R. American Mineralogist, 1998, 83: 1387—1398
[73] Diaz—Ricci J C, Kirschvink J L. J. Geophys. Res., 1992, 97: 17309—17315
[74] Schüler D, Frankel R B. Applied and Microbiology Biotechnology, 1999, 52: 464—473
[75] Faivre D, Schüler D. Chem. Rev., 2008, 108: 4875—4898
[76] Schüler D, Baeuerlein E. J. Bacteriol., 1998, 180: 159—162
[77] Schüler D, Baeuerlein E. Arch. Microbiol., 1996, 166: 301— 307
[78] Blakemore R P, Short K A, Bazylinski D A, Rosenblatt C, Frankel R B. Gemicrobiol. J., 1985, 4: 53—71
[79] Pasfai M, Moskowitz B M, Arata B, Schüler D, Christine F, Bazylinski DA, Frankel R B. Earth and Planetary Science Letters, 2006, 249: 444—455
[80] Han L, Li S, Yang Y, Zhao F G, Huang J, Chang J. Journal of Magnetism and Magnetic Materials, 2007, 313: 236—242
[81] Paoletti L C, Blakemore R P. Curr. Microbiol., 1988, 17: 339 —342
[82] Noguchi Y, Fujiwara T, Yoshimatsu K, Fukumori Y. J Bacteriol., 1999, 181: 2142—2147
[83] Lefèvre C T, Abreu F, Lins U, Bazylinski D A. Metal Nanoparticles in Microbiology, 2011, 75—102
[84] Cox B L, Popa R, Bazylinski D A, Lanoil B, Douglas S, Belz A. Geomicrobiol., 2002, 19(4): 387—406
[85] Roberts A P, Florindo F, Villa G, Liao C, Jovane L, Bohaty S M, Larrasoana J C, Heslop D, Fitz Gerald J D. Earth and Planetary Science Letters, 2011, 310: 441—452
[86] Boyd P W, Ellwood M J. Nat. Geosci., 2010, 3: 675—682
[87] Yang C D, Takeyama H, Tanaka T, Matsunaga T. Enzyme and Microbial Technology, 2001, 29: 13—19
[88] Roberts A P. Earth and Planetary Science Letters, 1995, 134: 227—236
[89] Naresh M, Gopinadhan K, Sekhar S, Juneja P, Sharma M, Mittal A. IEEE Trans. Magn., 2009, 45(10): 4861—4864
[90] Paoletti L C, Blakemore R P. J. Bacterial., 1986, 167(1): 73—76
[91] Calugay R J, Okamura Y, Wahyudi A T, Takeyama H, Matsunaga T. Biochemical and Biophysical Research Communications, 2004, 323: 852—857
[92] Stintzi A, Barnes C, Xu J, Raymond K N. Proc. Natl. Acad. Sci. U. S. A., 2000, 97: 10691—10696
[93] Gorby Y A, Beveridge T J, Blakemore R P. J. Bacteriol., 1988, 170(2): 834—841
[94] Grunberg K, Muller E C, Otto A, Reszka R, Linder D, Kube M, Reinhardt R, Schüler D. Appl. Environ. Microbiol., 2004, 70: 1040—1050
[95] Matsunaga T, Okamura Y. Trends in Microbiol., 2003, 11(11): 536—541
[96] Okamura Y, Takeyama H, Matsunaga T. J. Biol. Chem., 2001, 276(51): 48183—48188
[97] Nakamura C, Kikuchi T, Burgess J G. J. Biochem., 1995, 118: 23—27
[98] Komeili A, Vali H, Beveridge T J, Newman D K. Proc. Natl. Acad. Sci. U. S. A., 2004, 101(11): 3839—3844
[99] Schubbe S, Kube M, Scheffel A, Wawer C, Heyen U, Meyerdierks A, Madkour M H, Mayer F, Reinhardt R, Schüler D. J. Bacteriol., 2003, 185: 5779—5790
[100] Paulsen IT, Saier M. H. J. Membr. Biol., 1997, 156: 99—103
[101] Li L, Kaplan J. J. Biol. Chem., 1997, 272: 28485—28493
[102] Grunberg K, Wawer C, Tebo B M, Schuler D. Applied and Environmental Microbiology, 2001, 67(10): 4573—4582
[103] Frankel R B, Papaefthymiou G C, Blakemore R P. Biochimica and Biophysica Acta, 1983, 763: 147—159
[104] Pan Y X, Petersen N, Winklhofer M, Davila A F, Liu Q S, Frederichs T, Hanzlik M, Zhu R X. Earth Planet. Sci. Lett., 2005, 237(3/4): 311—325
[105] Naresh M, Das S, Mishra P, Mittal A. Biotechnol. Bioeng., 2012, 109(5): 1205—1216
[106] Tsuyoshi T, Matsunaga T. Biosensors Bioelectronics, 2001, 16: 1089—1094
[107] Heyen U, Schüler D. Appl. Microbiol. Biotechnol., 2003, 61(5/6): 536—544
[108] Wang Y, Gao H, Sun J, Li J, Su Y, Ji Y, Gong C. Desalination, 2011, 270: 258—263
[109] Song H, Li X, Sun J, Yin X, Wang Y, Wu Z. J. Chem. Eng., 2007, 15: 847—854
[110] Chang C F, Lin P H, Holl W. Colloids Surf. A, 2006, 280: 194—202
[111] Tseng J Y, Chang C Y, Chen Y H, Chang C F, Chiang P C. Colloids Surf. A, 2007, 295: 209—216
[112] Uheida A, Iglesias M, Fontàs C, Hidalgo M, SalvadóV, Zhang Y, Muhammed M. J. Colloid Interface Sci., 2006, 301: 402—408
[113] Nilanjana D. Hydrometallurgy, 2010, 103: 180—189
[114] Bahaj A S, Jams P A B, Moeschler F D. Wat. Sci. Tech., 1998, 38(6): 311—317
[115] Sugaware K, Yugami A, Kuramitz H. Anal. Bioanal. Chem., 2009, 395: 767—772
[116] Li Y C, Lin Y S, Tsai P J, Chen C T, Chen W Y, Chen Y C. Anal. Chem., 2007, 79: 7519—7525
[117] Chen H, Liu S, Yang H, Mao Y, Deng C, Zhang X, Yang P. Proteomics, 2010, 10: 930—939
[118] Matsunaga T, Hashimoto K, Nakamura N. J. Appl. Mierobiol. Biotechnol., 1989, 31: 401—405
[119] Kaneta Y, Tsukazaki K, Kubushiro K, Sakayori M, Ueda M, Nozawa S. Oncology Reports, 2000, 7(5): 1099—1106
[120] Dzarova A, Royer F, Timko M, Jamon D, Kopcansky P, Kovac J, Choueikani F, Gojzewski H, Rousseau J. Journal of Magnetism and Magnetic Materials, 2011, 323: 1453—1459
[121] Li J, Song S, Li D, Su Y, Huang Q, Zhao Y, Fan C. Biosens. Bioelectron., 2009, 24: 3311—3315
[122] Matsunaga T, Kamiya S. J. Appl. Mierobiol. Biotechnol., 1987, 26: 328—332
[123] Matsunaga T, Kawasaki M, Yu X, Tsujimura N, Nakamura N. Anal. Chem., 1996, 68: 3551—3554
[124] Jia R F, Peng X Z. Mater. Sci. Engin. C, 2006, 26: 593—596
[125] Simmons S L, Edwards K J. Microbiol. Monogr., 2007, 3: 78—102
[126] Buseck P R, Dunin-Borkowski R E, Devouard B, Frankel R B, McCartney M R, Midgley P A, Posfai M, Weyland M. Proc. Natl. Acad. Sci. U. S. A., 2001, 98(24): 13490—13495
[127] Iida A, Akai J. Japan Sci. Rep. Niigata Univ., Ser. E(Geology), 1996, 11: 43—66
[128] Popa R, Fang W, Nealson K H, Souza-Egipsy V, Berquó T S, Banerjee S K. Penn L R. Int. Microbiol., 2009, 12(1): 49—57
[129] Kirschvink J L, Chang S B R. Geology, 1984, 12: 559—562
[130] Frankel R B, Buseck P R. Current Opinion in Chemical Biology, 2000, 4(2): 171—176
[131] Friedmann E I, Wierzchos J, Ascaso C, Winklhofer M. Proc. Natl. Acad. Sci. U. S. A., 2001, 98(5): 2176—2181
[132] Thomas-Keprta K L, Clemett S J, Bazylinski D A, Kirschvink J L, Mckay D S, Wentworth S J, Vali H, Gibson E K, Mckay M F, Romanek C S. Proc. Natl. Acad. Sci. U. S. A., 2001, 98: 2164—2169
[133] McKay C P, Friedmann E I, Frankel R B, Bazylinski D A. Astrobiology, 2003, 3(2): 263—270
[134] McKay D S, Gibson E K Jr, Thomas-Keprta K L, Vali H, Romanek C S, Clemett S J, Chillier X D F, Maechling C R, Zare R N. Science, 1996, 273: 924—930
[135] Thomas-Keprta K L, Clemett S J, Bazylinski D A, Kirschvink J L, Mckay D S, Wentworth S J, Vali H, Gibson E K Jr, Romanek C S. Appl. Environ. Microbiol., 2002, 68: 3663—3672
[136] Weiss B P, Kim S, Kirschvink J L, Kopp R E, Sankaran M, Kobayashi A, Komelil A. Proc. Natl. Acad. Sci. U. S. A., 2004, 101: 8281—8284
[137] Sakai S, Jige M. Island Arc., 2006, 15: 468—475
[138] Komeili A. FEMS Microbiol. Rev., 2012, 36(1): 232—255
[139] 陈彦平(Chen Y P), 郭芳芳(Guo F F), 姜伟(Jiang W), 李颖(Li Y). 东南大学学报(医学版)(Journal of Southeast University(Medical Science Edition)), 2011, 30(1): 47—51
[140] Bazylinski D, Williams T. Micro. Monogr., 2007, 3(9): 37—75
[141] Baumgartner J, Faivre D. Prog. Mol. Subcell. Biol., 2011, 52(11): 3—27
[142] Murat D, Quinlan A, Vali H, Komeili A. Proc. Natl. Acad. Sci. U. S. A., 2010, 107(12): 5593—5598
[143] Tanaka M, Mazuyama E, Arakaki A, Matsunaga T. J. Biol. Chem., 2011, 286(8): 6386—6392
[144] 高峻(Gao J), 肖天(Xiao T), 孙松(Sun S). 高技术通讯(High Technology Letters), 2004, 14(5): 44—47
[145] 高峻(Gao J), 宋涛(Song T), 潘红苗(Pan H M). 高技术通讯(High Technology Letters), 2005, 15(8): 107—110
[146] Li J H, Pan Y X, Chen G J. Geophys. J. Int., 2009, 177: 33—42
[147] Moskowitz B M, Frankel R B, Bazylinski D A. Earth Planet. Sci. Lett., 1993, 120(3/4): 283—300
[148] Moskowitz B M, Bazylinski D A, Egli R. Geophys. J. Int., 2008, 174: 75—92
[149] Fischer H, Mastrogiacomo G, Lffler J F, Warthmann R J, Weidler P G, Gehring A U. Earth Planet. Sci. Lett., 2008, 270 (3/4): 200—208
[150] Prozorov T, Palo P, Wang L J, Nilsen-Hamilton M, Jones D A, Orr D, Mallapragada S K, Narasimhan B, Canfield P C, Prozorov R. ACS Nano, 2007, 1(3): 228—233
[151] Kopp R E, Weiss B P, Maloof A C, Vali H, Nash C Z, Kirschvink J L. Earth Planet. Sci. Lett., 2006, 247(1/2): 10—25
[152] Gehring A U, Kind J, Charilaou M, García-Rubio I. Earth Planet. Sci. Lett., 2011, 309(1/2): 113—117
[153] Alphandéry E, Ngo A T, Lefevre C. J. Phys. Chem. C, 2008, 112: 12304—12309
[154] Alphandéry E, Faure S, Raison L, Duguet E A, Howse P, Bazylinski D A. J. Phys. Chem. C, 2011, 115 (1): 18—22
[155] Staniland S, Williams W, Telling N, van Der Laan G, Harrison A, Ward B. Nature Nanotechnology, 2008, 3: 158—162
[156] Pan Y, Lin W, Tian L, Zhu R, Petersen N. Geomicrobiol. J. 2009, 26(5): 313—320
[157] Wei J D, Knittel I, Lang C, Schüler D, Hartmann U. J Nanopart. Res., 2011, 13(8): 3345—3352
[158] Alphandéry E, Faure S, Seksek O, Guyot F, Chebbi I. ACS Nano, 2011, 5 (8): 6279—6296
[159] Simpson E T, Kasama T, Pósfai M, Buseck P R, Harrison R J, Dunin-Borkowski R E. J. Phys: Conf. Ser., 2005, 17: 108—121
[160] Oldfield F. J. Geophys. Res., 1994, 99: 9045—9095
[1] 桑艳华, 潘海华, 唐睿康. 生物矿化中的凝聚态化学[J]. 化学进展, 2020, 32(8): 1100-1114.
[2] 王本, 唐睿康*. 生物矿化:无机化学和生物医学间的桥梁之一[J]. 化学进展, 2013, 25(04): 633-641.
[3] 欧阳健明*, 张广娜, 王凤新, 李君君. 草酸钙结石患者尿液中纳米微晶的成核、生长、聚集及其与结石形成的关系[J]. 化学进展, 2013, 25(04): 642-649.
[4] 刘闯, 王元贵, 耿家青, 姜忠义, 杨冬. 无机纳米粒子的生物合成[J]. 化学进展, 2011, 23(12): 2510-2521.
[5] 吴聪孟, 王小强, 赵康, 曹美文, 徐海, 吕建仁. 原子力显微镜法研究方解石(104)面的生长及溶解[J]. 化学进展, 2011, 23(01): 107-124.
[6] 欧阳健明 杨如娥 谈金. 肾上皮细胞损伤对草酸钙形成和黏附的影响*[J]. 化学进展, 2010, 22(08): 1665-1671.
[7] 蔡国斌,郭晓辉,俞书宏. 聚合物控制模拟生物矿化*[J]. 化学进展, 2008, 20(0708): 1001-1014.
[8] 徐旭荣,蔡安华,刘睿,潘海华,唐睿康. 生物矿化中的无定形碳酸钙*[J]. 化学进展, 2008, 20(01): 54-59.
[9] 欧阳健明. 单分子膜诱导生物矿物晶体生长中的晶格匹配和电荷匹配*[J]. 化学进展, 2005, 17(05): 931-937.
[10] 欧阳健明. 生物矿物及其矿化过程*[J]. 化学进展, 2005, 17(04): 749-756.
[11] 欧阳健明,陈德志. 自组装膜调控下生物矿物晶体的生长*[J]. 化学进展, 2005, 17(03): 563-572.
[12] 王庆伦,廖代正. 单分子磁体及其磁学表征*[J]. 化学进展, 2003, 15(03): 161-.
[13] 王荔军,郭中满,李铁津,李敏. 生物矿化纳米结构材料与植物硅营养[J]. 化学进展, 1999, 11(02): 119-.
[14] 冯庆玲,王浩,崔福斋,毛传斌,李恒德. 无机材料的仿生合成[J]. 化学进展, 1998, 10(03): 246-.