English
新闻公告
More
化学进展 2013, Vol. 25 Issue (07): 1113-1121 DOI: 10.7536/PC121153 前一篇   后一篇

• 综述与评论 •

新型多孔氮化硼材料

刘栋1,2, 唐成春1*, 薛彦明1, 李杰1   

  1. 1. 河北工业大学材料科学与工程学院 天津 300130;
    2. 河北联合大学化学工程学院 唐山 063009
  • 收稿日期:2012-11-01 修回日期:2013-01-01 出版日期:2013-07-25 发布日期:2013-04-16
  • 通讯作者: 唐成春 E-mail:tangcc@hebut.edu.cn
  • 基金资助:

    973计划前期研究专项(No. 2011CB612301)、国家自然科学基金项目(No. 10974041)和河北省杰出青年基金项目(No. E2011202145)资助

New Porous Boron Nitride Materials

Liu Dong1,2, Tang Chengchun1*, Xue Yanming1, Li Jie1   

  1. 1. School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China;
    2. College of Chemical Engineering, Hebei United University, Tangshan 063009, China
  • Received:2012-11-01 Revised:2013-01-01 Online:2013-07-25 Published:2013-04-16

多孔氮化硼材料是一种新型多孔非氧化物材料,具有高比表面积、可调孔径、良好的化学惰性和热稳定性等特点,在催化、储氢、气体吸附和分离等领域具有巨大的应用潜力,是材料领域研究热点之一。依孔径的不同,多孔氮化硼材料被分为微孔氮化硼、介孔氮化硼、大孔氮化硼和多级孔氮化硼。本文综述了微孔、介孔、大孔及多级孔等类型氮化硼材料的研究进展。重点介绍了不同类型氮化硼材料的制备和性能,并分析了各种制备方法的优缺点,最后探讨了多孔氮化硼材料的发展前景。

As a new porous non-oxide material, porous boron nitride has attracted increasing interests due to its plenty of unique properties such as large specific surface area, tunable pore size, excellent chemical inertness and thermal stability, which are useful in catalysis, hydrogen storage, gas adsorption and separation. Based on the different pore sizes, porous boron nitride is divided into four types, namely, microporous boron nitride, mesoporous boron nitride, macroporous boron nitirde and hierarchical boron nitride. In this review, recent development of porous boron nitride with different structures is summarized. The synthesis and properties of different types of boron nitride are emphatically described, and the advantages and disadvantages of various synthesis methods are discussed. Finally, the promising applications and development directions of porous boron nitride are highlighted. Contents
1 Introduction
2 Synthesis methods of porous boron nitride materials
2.1 Template synthesis
2.2 High pressure reaction synthesis
3 Microporous boron nitride materials
4 Mesoporous boron nitride materials
4.1 Ordered mesoporous boron nitride materials
4.2 Disordered mesoporous boron nitride materials
5 Macroporous boron nitride materials
6 Hierarchical porous boron nitride materials
7 Conclusion and outlook

中图分类号: 

()

[1] Paine R T, Narula C K. Chem. Rev., 1990, 90(1): 73-91
[2] Paine R T, Sneddon L G. Chemtech, 1994, 24(4): 29-37
[3] Ryoo R, Joo S H, Kruk M, Jaroniec M. Adv. Mater., 2001, 13(9): 677-681
[4] 吴雪艳(Wu X Y), 王开学(Wang K X), 陈接胜(Chen J S). 化学进展(Progress in Chemistry), 2012, 24(2/3): 262-274
[5] Lindquist D A, Borek T T, Kramer S J, Narula C K, Johnston G, Schaeffer R, Smith D M, Paine R T. J. Am. Ceram. Soc., 1990, 73(3): 757-760
[6] Postole G, Caldararu M, Ionescu N I, Bonnetot B, Auroux A, Guimon C. Thermochim. Acta, 2005, 434: 150-157
[7] Postole G, Gervasini A, Caldararu M, Bonnetot B, Auroux A. Appl. Catal. A: General, 2007, 325: 227-236
[8] Wu J C S, Fan Y C, Lin C A. Ind. Eng. Chem. Res., 2003, 42(14): 3225-3229
[9] Wu J C S, Chen W C. Appl. Catal. A: General, 2005, 289: 179-185
[10] Wu J C S, Lin S J. Chem. Eng. J., 2008, 140: 391-397
[11] Lin L X, Li Z H, Zheng Y, Wei K M. J. Am. Ceram. Soc., 2009, 92(6): 1347-1349
[12] Borek T T, Ackerman W, Hua D W, Paine R T, Smith D M. Langmuir, 1991, 7(11): 2844-2846
[13] Corso M, Auwärter W, Muntwiler M, Tamai A, Greber T, Osterwalder J. Science, 2004, 303: 217-220
[14] Borovinskaya I P, Bunin V A, Merzhanov A G. Mendeleev Commun., 1997, 2: 47-48
[15] Kresge C T, Leonowicz M E, Roth W J, Vartuli J C, Beck J S. Nature, 1992, 359: 710-712
[16] Shi Y F, Wan Y, Zhao D Y. Chem. Soc. Rev., 2011, 40: 3854-3878
[17] Vinu A, Terrones M, Golberg D, Hishita S, Ariga K, Mori T. Chem. Mater., 2005, 17(24): 5887-5890
[18] Ariga K, Vinu A, Yamauchi Y, Ji Q M, Hill J P. Bull. Chem. Soc. Jpn., 2012, 85(1): 1-32
[19] Wang L C, Xu L Q, Sun C H, Qian Y T. J. Mater. Chem., 2009, 19: 1989-1994
[20] Janik J F, Ackerman W C, Paine R T, Hua D W, Maskara A, Smith D M. Langmuir, 1994, 10(2): 514-518
[21] Wood G L, Paine R T. Chem. Mater., 2006, 18(20): 4716-4718
[22] Dibandjo P, Bois L, Chassagneux F, Cornu D, Letoffe J M, Toury B, Babonneau F, Miele P. Adv. Mater., 2005, 17(5): 571-574
[23] Dibandjo P, Bois L, Estournes C, Durand B, Miele P. Microporous Mesoporous Mater., 2008, 111: 643-648
[24] Dibandjo P, Chassagneux F, Bois L, Sigala C, Miele P. Microporous Mesoporous Mater., 2006, 92: 286-291
[25] Dibandjo P, Chassagneux F, Bois L, Sigala C, Miele P. J. Mater. Chem., 2005, 15: 1917-1923
[26] Rushton B, Mokaya R. J. Mater. Chem., 2008, 18: 235-241
[27] Dibandjo P, Chassagneux F, Bois L, Sigala C, Miele P. J. Mater. Res., 2007, 22(1): 26-34
[28] Dibandjo P, Bois L, Chassagneux F, Letoffe J M, Miele P. J. Porous Mater., 2008, 15: 13-20
[29] Dibandjo P, Bois L, Chassagneux F, Toury B, Cornu D, Babonneau F, Miele P. Stud. Surf. Sci. Catal., 2005, 156: 279-286
[30] Malenfant P R L, Wan J L, Taylor S T, Manoharan M. Nat. Nanotechnol., 2007, 1: 43-46
[31] Berner S, Corso M, Widmer R, Groening O, Laskowski R, Blaha P, Schwarz K, Goriachko A, Over H, Gsell S, Schreck M, Sachdev H, Greber T, Osterwalder J. Angew. Chem. Int. Ed., 2007, 46(27): 5115-5119
[32] Martoccia D, Pauli S A, Brugger T, Greber T, Patterson B D, Willmott P R. Surf. Sci., 2010, 604: L9-L11
[33] Goriachko A, Yunbin, Knapp M, Over H, Corso M, Brugger T, Berner S, Osterwalder J, Greber T. Langmuir, 2007, 23(6): 2928-2931
[34] Martoccia D, Brugger T, Björck M, Schlepütz C M, Pauli S A, Greber T, Patterson B D, Willmott P R. Surf. Sci., 2010, 604: L16-L19
[35] Goriachko A, Over H. Zeitschrift für Physikalische Chemie, 2009, 223(1/2): 157-158
[36] Goriachko A, He Y B, Over H. J. Phys. Chem. C, 2008, 112 (22): 8147-8152
[37] Goriachko A, Zakharov A A, Over H. J. Phys. Chem. C, 2008, 112 (28): 10423-10427
[38] Han W Q, Brutchey R, Tilley T D, Zettl A. Nano Lett., 2004, 4(1): 173-176
[39] Han W Q, Bando Y, Kurashima K, Sato T. Appl. Phys. Lett., 1998, 73(21): 3085-3087
[40] Golberg D, Bando Y, Bourgeois L, Kurashima K, Sato T. Carbon, 2000, 38(14): 2017-2027
[41] Han W Q, Cumings J, Huang X S, Bradley K, Zettl A. Chem. Phys. Lett., 2001, 346(5/6): 368-372
[42] Murakami M, Shimizu T, Tansho M, Vinu A, Ariga K, Takegoshi K. Chem. Lett., 2006, 35(9): 986-987
[43] Murakami M, Shimizu T, Tansho M, Vinu A, Ariga K, Mori T, Takegoshi K. Solid State Nucl. Magn. Reson., 2007, 31: 193-196
[44] Narula C K, Schaeffer R, Paine R T, Datye A, Hammetter W F. J. Am. Chem. Soc., 1987, 109(18): 5556-5557
[45] Dibandjo P, Bois L, Chassagneux F, Miele P. J. Eur. Ceram. Soc., 2007, 27: 313-317
[46] Wang M, Li M H, Xu L Q, Wang L C, Ju Z C, Li G, Qian Y T. Catal. Sci. Technol., 2011, 1: 1159-1165
[47] Meng X L, Lun N, Qi Y X, Zhu H L, Han F D, Yin L W, Fan R H, Bai Y J, Bi J Q. J. Solid State Chem., 2011, 184: 859-862
[48] Perdigon-Melon J A, Auroux A, Guimon C, Bonnetot B. J. Solid State Chem., 2004, 177: 609-615
[49] Perdigon-Melon J A, Auroux A, Cornu D, Miele P, Toury B, Bonnetot B. J. Organomet. Chem., 2002, 657: 98-106
[50] Sung I K, Kim T S, Yoon S B, Yu J S, Kim D P. Stud. Surf. Sci. Catal., 2003, 146: 547-550
[51] 孙常慧(Sun C H), 徐立强(Xu L Q), 马小健(Ma X J), 钱逸泰(Qian Y T). 无机化学学报(Chinese Journal of Inorganic Chemistry), 2012, 28(3): 601-606
[52] Zheng M T, Liu Y L, Gu Y L, Xu Z L. Sci. China Ser. B-Chem., 2008, 51(3): 205-210
[53] Alauzun J G, Ungureanu S, Brun N, Bernard S, Miele P, Backov R, Sanchez C. J. Mater. Chem., 2011, 21: 14025-14030
[54] Schlienger S, Alauzun J, Michaux F, Vidal L, Parmentier J, Gervais C, Babonneau F, Bernard S, Miele P, Parra J B. Chem. Mater., 2012, 24: 88-96
[55] Weng Q H, Wang X B, Zhi C Y, Bando Y, Golberg D. ACS Nano, 2013, 7(2): 1558-1565. DOI: 10.1021/nn305320v
[56] Laurel J S, Arenal R, Ducastelle F, Loiseau A, Cau M, Attal-Tretout B, Rosencher E, Goux-Capes L. Phys. Rev. Lett., 2005, 94(3): art. no. 037405
[57] Wang P, Orimo S, Matsushima T, Fujii H. Appl. Phy. Lett., 2002, 80(2): 318-320
[58] Ma R, Bando Y, Zhu H, Sato T, Xu C, Wu D. J. Am. Chem. Soc., 2002, 124(26): 7672-7673
[59] Jhi S H, Kwon Y K. Phys. Rev. B, 2004, 69: art. no. 245407
[60] Tang C C, Bando Y, Sato T, Kurashima K. Chem. Commun., 2002, (12): 1290-1291
[61] Tang C C, Bando Y, Ding X X, Qi S R, Golberg D. J. Am. Chem. Soc., 2002, 124(49): 14550-14551
[62] Tang C C, Bando Y, Huang Y, Yue S L, Gu C Z, Xu F F, Golberg D. J. Am. Chem. Soc., 2005, 127(18): 6552-6553
[63] Tang C C, Bando Y, Huang Y, Zhi C Y, Golberg D. Adv. Funct. Mater., 2008, 18: 3653-3661

[1] 周伶俐, 谢瑞刚, 王林江. 层状双金属氢氧化物在电催化中的应用[J]. 化学进展, 2019, 31(2/3): 275-282.
[2] 李勃天, 温幸, 唐黎明. 一维聚合物-无机纳米复合材料的制备[J]. 化学进展, 2018, 30(4): 338-348.
[3] 汪伟, 谢锐, 巨晓洁, 刘壮, 褚良银*. 液滴模板法制备颗粒材料过程中介尺度结构调控的研究进展[J]. 化学进展, 2018, 30(1): 44-50.
[4] 来庆学, 张校刚, 梁彦瑜. 离子液体为新型前驱体制备含氮碳纳米材料及其应用[J]. 化学进展, 2013, 25(10): 1703-1712.
[5] 吴雪艳, 王开学, 陈接胜. 多孔碳材料的制备[J]. 化学进展, 2012, 24(0203): 262-274.
[6] 马智, 王金叶, 高祥, 丁彤, 秦永宁. 埃洛石纳米管的应用研究现状[J]. 化学进展, 2012, 24(0203): 275-283.
[7] 王志飞 杨雯 何农跃. 超顺磁性纳米颗粒为催化剂载体的研究* [J]. 化学进展, 2009, 21(10): 2053-2059.
[8] 王春雷,马丁,包信和. 碳纳米材料及其在多相催化中的应用[J]. 化学进展, 2009, 21(09): 1705-1721.
[9] 王嬿嬿,马谆,范曲立,黄维. 苯炔体系大环合成、自组装及其应用*[J]. 化学进展, 2006, 18(0203): 281-289.
[10] 张作山,张树永,李文荣. 模板及其在纳米材料合成领域的应用[J]. 化学进展, 2004, 16(01): 26-.
[11] 马玉荣,齐利民,马季铭. 中孔氧化硅的超分子模板合成及其结构与形貌的调控*[J]. 化学进展, 2003, 15(06): 477-.
[12] 王荔军,郭中满,李铁津,李敏. 生物矿化纳米结构材料与植物硅营养[J]. 化学进展, 1999, 11(02): 119-.
阅读次数
全文


摘要

新型多孔氮化硼材料