English
新闻公告
More
化学进展 DOI: 10.7536/PC121135 前一篇   后一篇

• 材料 •

自然的启示: 多糖与功能材料的集成组装

王赟, 黄海波, 褚光, 徐雁*   

  1. 无机合成与制备化学国家重点实验室 吉林大学 长春 130012
  • 收稿日期:2012-11-01 修回日期:2012-12-01 出版日期:2013-04-24 发布日期:2013-04-09
  • 通讯作者: 徐雁 E-mail:yanxu@jlu.edu.cn

Bio-Inspired Functional Integration by Self-Assembly and Mineralization of Polysaccharides

Wang Yun, Huang Haibo, Chu Guang, Xu Yan*   

  1. State Key Laboratory of Inorganic Synthesis and Preparative Chemistry,Jilin University, Changchun 130012, China
  • Received:2012-11-01 Revised:2012-12-01 Online:2013-04-24 Published:2013-04-09

从自然界汲取创新灵感,深层次解析生物材料的形成过程以及结构-功能关系是仿生材料研究的核心问题。生物矿物质是一类天然无机-有机界面复合材料,以复杂高级有序结构、多功能以及温和组装为特点,在复合生物大分子诱导调控下构建而成。天然多糖是一类特殊的碳水化合物,具有丰富的化学和结构特性,它们在众多生物矿物质的形成过程中扮演重要角色。科学家预言多糖在创新功能材料研究中举足轻重。文章以贝壳珍珠层、龙虾壳及硅藻为例,概述生物矿物质的形成过程和结构-功能关系,列举仿生先进材料研究代表性工作,扼要介绍多糖自组装特性、生物功能以及无机-多糖共组装化学,并列举该研究领域代表性前沿工作,评述多糖自组装体诱导构建功能界面材料的研究战略,提出对该研究领域未来发展的粗浅看法。期望以此文抛砖引玉,邀请跨学科合作,推动功能材料集成组装研究领域的发展。

Bio-inspired materials strategy seeks inspiration from nature for their use as models in the organization of advanced materials with embedded structural hierarchy. Biominerals are highly sophisticated interfacial materials and have functions integrated by self-assembly and mineralization of biomacromolecules. Polysaccharides, representing approximately three quarters of natural biomass resources, have the richness of structure, chemistry and actuation properties. They play critical roles in the organization and functional integration of biominerals, typical examples including chitin in lobster cuticle and nacre shells. Such materials can provide environmentally compatible solutions to some of the modern technological problems. Representative biominerals including nacre shells, lobster cuticle and diatom frustules, and some pertinent bio-inspired materials with salient structural functions are reviewed. The self-assembly and actuation properties of selected polysaccharides such as cellulose and alginate, and their inspiration to the design of advanced materials are covered. The concept of cooperative assembly of inorganic-polysaccharides interfacial materials is introduced, and representative advancement in bio-inspired functional integration by self-assembly and mineralization of polysaccharides are highlighted. It is hoped that this article will encourage further scientific investigations and invite more insightful view as how bio-inspired functional integration can be best achieved by self-assembly and mineralization of polysaccharides.

中图分类号: 

()

[1] Vaia R, Baur J. Science, 2008, 319: 420-421
[2] Capadona J R, Shanmuganathan K, Tyler D, Rowan S J, Weder C. Science, 2008, 319: 1370-1374
[3] Sidorenko A, Krupenkin T, Taylor A, Fratzl P, Aizenberg J. Science, 2007, 315: 487-490
[4] Fratzl P, Barth F G. Nature, 2009, 462: 442-448
[5] Munch E, Launey M E, Alsem D H, Saiz E, Tomsia A P, Ritchie R O. Science, 2008, 322: 1516-1520
[6] Bonderer L J, Studart A R, Gauckler L J. Science, 2008, 319: 1069-1073
[7] Fratzl P, Weinkammer R. Prog. Mater. Sci., 2007, 52: 1263-1334
[8] Ortiz C, Boyce M C. Science, 2008, 319: 1053-1054
[9] Dennler G, Scharber M C, Brabec C J. Adv. Mater., 2009, 21: 1323-1338
[10] Meyers M A, Chen P Y, Lin A Y M, Seki Y. Prog. Mater. Sci., 2008, 53: 1-206
[11] Heinemann F, Launspach M, Gries K, Fritz M. Biophysical Chem., 2011, 153: 126-153
[12] Burton W, Cabrera N, Frank F. Philos. Trans. R. Soc. London Ser. A, 1951, 243: 299-358
[13] Cartwright J H E, Checa A, Escribano B, Sainz-D韆z C I. Proceeding of the National Academy of Science of the United State of America, 2009, 106: 10499-10504
[14] Weiner S, Traub W, Parker S B. Phil. Trans. R. Soc. Lond. B, 1984, 304: 425-434
[15] Gummich J. Studiengang Mediendesign, Hochschule Braunschweig/Wolfenb黷tel. 38302 Wolfenb黷tel, Germany, 2012
[16] Cartwright J H E, Checa A G. J. R. Soc. Interface, 2007, 4: 491-504
[17] Wada K. Biomineralization, 1972, 4: 141-159
[18] Schaffer T E, Zanetti C I, Proksch R. Chem. Mater., 1997, 9: 1731-1740
[19] Sanabria H, Swulius M T, Kolodziej S J, Liu J, Waxham M N. J. Struct. Biol., 1992, 109: 116-121
[20] Saito Y, Kumagai H, Wada M, Kuga S. Biomacromolecules, 2002, 3: 407-410
[21] Addadi L, Raz S, Weiner S. Adv. Mater., 2003, 15: 959-970
[22] Gehrke N, Nassif N, Pinna N, Antonietti M, Gupta H S, Cölfen H. Chem. Mater., 2005, 17: 6514-6516
[23] Li X D, Xu Z H, Wang R Z. Nano Lett., 2006, 6: 2301-2304
[24] Li X, Chang W, Chao Y J, Wang R, Chang M. Nano Lett., 2004, 4: 613-617
[25] Li X, Nardi P. Nanotechnology, 2004, 15: 211-217
[26] Eichhorn S J, Scurr D J, Mummery P M, Golshan M, Thompson S P, Cernik R J. J. Mater. Chem., 2005, 15: 947-952
[27] Evans J S. Chem. Rev., 2008, 108: 4455-4462
[28] Jackson D J, McDougall C, Green K M, Simpson F, Wrheide G, Degnan B M. Biophys. J., 2007, 93: 1246-1254
[29] McClure K F, Lee J H, Kemp D S. J. Am. Chem. Soc., 1996, 118: 3082-3090
[30] Bhattacharyya R, Chakrabarti P. J. Mol. Biol., 2003, 331: 925-940
[31] Kentsis A, Mezei M, Gindin T, Osman R. Proteins: Struct. Funct. Bioinf., 2004, 55: 493-501
[32] Levi-Kalisman Y, Falini G, Addadi L, Weiner S. J. Struct. Biol., 2001, 135: 8-17
[33] Lin A, Meyers M A. Mater. Sci. Eng., 2005, 390: 27-41
[34] Belamie E, Davidson P, Giraud-Guille M M. J. Phys. Chem. B, 2004, 108: 14991-15000
[35] Neville A C. Biology of Fibrous Composites: Development beyond the Cell Membrane. UK: Cambridge University Press, 1993
[36] Verkhratsky A, Orkand R K, Kettenmann H. Proc. Roy. Soc. Lond., 1988, 234: 414-440
[37] Smith B L, Schaffer T E, Viani M. Nature, 1999, 399: 761-763
[38] Hutchinson J W. J. Mater. Res., 2001, 16: 2475-2484
[39] Meyers M A, Lin A Y, Chen P Y, Muyco J. J. Mech. Behav. Biomed. Mater., 2008, 1: 76-85
[40] Wang J F, Cheng Q F, Tang Z Y. Chem. Soc. Rev., 2012, 41: 1111-1129
[41] Corni I, Harvey T J, Wharton J A, Stokes K R, Walsh F C, Wood R J. Bioinspir. Biomim., 2012, 7: art. no. 031001
[42] Finnemore A, Cunha P, Shean T, Vignolini S, Guldin S, Oyen M, Steiner U. Nat. Comm., 2012, 3: 1-6
[43] Oaki Y, Imai H. Adv. Funct. Mater., 2005, 15: 1407-1414
[44] Wakahara T, Matsunaga Y, Katayama A, Maeda Y, Kako M, Akasaka T, Okamura M, Kato T, Choe Y K, Kobayashi K, Nagase S, Huange H, Atae M. Chem. Commun., 2003, 2940-2941
[45] Yu S H, Antonietti M, Cölfen H, Hartmann J. Nano Lett., 2003, 3: 379-382
[46] Oaki Y, Imai H. Langmuir, 2005, 21: 863-869
[47] Mayer G. Science, 2005, 310: 1144-1147
[48] Bauermann L P, del Campo A, Bill J, Aldinger F. Chem. Mater., 2006, 18: 2016-2020
[49] Tseng Y H, Lin H Y, Liu M H, Chen Y F, Mou C Y. J. Phys. Chem. C, 2009, 113: 18053-18061
[50] Nikolov S, Fabritius H, Petrov M, Fri醟 M, Lymperakis L, Sachs C, Raabe D, Neugebauer J. Adv. Mater., 2009, 21: 391-400
[51] Dillaman R, Hequembourg S, Gay M. J. Morphology, 2005, 263: 356-374
[52] Romano P, Fabritius H, Raabe D. Acta Biomaterialia, 2007, 3: 301-309
[53] Raabe D, Romano P, Sachs C, Al-Sawalmih A, Brokmeier H G, Yi S B, Servos G, Hartwig H G. J. Cryst. Growth, 2005, 283: 1-7
[54] Bouligand Y. Aspects Ultrastructuraux de la Calcification Chez les Crabes. in: 7鑝e Congr. Internat. Microsc. Électr., Grenoble, France, 1970, 3: 105-106
[55] Weiner S, Addadi L. J. Mater. Chem., 1997, 7: 689-702
[56] Giraud-Guille M M. Curr. Opin. Solid State Mater. Sci., 1998, 3: 221-227
[57] Raabe D, Romanoa P, Sachs C. Mater. Sci. Eng., 2006, 421: 143-153
[58] Comp閞e P, Goffinet G. Tissue Cell, 1987, 19: 839-857
[59] Blackwell J, Weih M A. J. Mol. Biol., 1980, 137: 49-60
[60] Giraud-Guille M M. Tissue Cell, 1984, 16: 75-92
[61] Nikolov S, Fabritius H O, Petrov M, Fri醟 M, Lymperakis L, Sachs C, Raabe D, Neugebauer J. J. Mech. Behav. Biomed., 2011, 4: 129-145
[62] Krauss S, Ornan E M, Zelzer E, Fratzl P, Shahar R. Adv. Mater., 2009, 21: 407-412
[63] Al-Sawalmih A, Li C H, Siegel S, Fabritius H, Yi S B, Raabe D, Fratzl P, Paris O. Adv. Func. Mater., 2008, 18: 3307-3314
[64] Sachs C, Fabritius H, Raabe D. J. Struct. Biol., 2008, 161: 120-132
[65] Rharbi-Kucki E, Sumper M. Appl. Phys. B, 2004, 78: 257-260
[66] Rosi N L, Thaxton C S, Mirkin C A. Angew. Chem. Int. Ed., 2004, 116: 5616-5619
[67] Stefano L D, Rendina I, de Stefano M. Appl. Phys. Lett., 2005, 87: art. no. 233902
[68] Coradin T, Livage J. Mater. Sci. Eng. C, 2005, 25: 201-205
[69] Losic D, Rosengarten G, Mitchell J G. J. Nanosci. Nanotechnol., 2006, 6: 982-989
[70] Smol J P, Stoermer E F. The Diatoms. UK: Cambridge University Press, 1999
[71] Sumper M. Science, 2002, 295: 2430-2433
[72] Losic D, Pillar R J, Dilger T, Mitchell J G, Voelcker N H. J. Porous Mater., 2007, 14: 61-69
[73] Kroger N, Deutzmann R, Bergsdorf C, Sumper M. Proc. Nat. Acad. Sci. U. S. A., 2000, 97: 14133-14138
[74] Cima J, Oliveira M, Wang H R, Sachs E M, Hoiman R. J. Phycol., 2001, 37: 543-554
[75] Higgins M J, Sader J E, Mulvaney P, Wetherbee R. J. Phycol., 2003, 39: 722-734
[76] Gebeshuber I C, Kindt J H, Thompson J B, Delamo Y, Stachelberger H, Brzezinski M A, Stucky G D, Morse D E, Hansma P K. J. Microsc., 2003, 212: 292-299
[77] Brzezinski L M, Hansma P K. J. Microsc., 2003, 202: 518-524
[78] Gebeshuber I C, Thompson J B, Amo Y D. Mater. Sci. Technol., 2002, 18: 763-766
[79] Wetherbee R, Lind J L, Burke J, Quatrano R S. J. Phycol., 1998, 34: 9-15
[80] (a) Gebeshuber C, Graford R M. Proc. Inst. Mech. Eng., 2006, 220: 787-791; (b) Gebeshuber I C, Stachelberger H, Drack M. J. Nanosci. Nanotechnol., 2005, 5: 79-87
[81] Vyvermann W, Chepurnov V A. Mater. Sci. Eng. C, 2005, 25: 658-663
[82] Setaro A, Lettieri S, Maddalena P. Appl. Phys. Lett., 2007, 91: art. no. 051921
[83] Townley H E, Woon K L, Payne F P, Cooper H W, Parker A R. Nanotechnology, 2007, 18: art. no. 295101
[84] De Stefano L, Rea I, Rendina I, de Stefano M, Moretti L. Opt. Express, 2007, 15: 18082-18088
[85] Fuhrmann T, Landwehr S, El Rharbi-Kucki M. Appl. Phys. B, 2004, 78: 257-260
[86] Druart G, Gu閞ineau N, Haïdar R, Lambert E, Tauvy M, Th閠as S, Rommelu鑢e S, Primot J, Deschamps J. Proc. SPIE 2992, Micro-Optics, 2008, art. no. 69920G
[87] Gogoi A, Buragohain A K, Choudhury A, Ahmed G A. J. Quant. Spectrosc. Radiat. Transfer, 2009, 110: 1566-1578
[88] O'Regan B, Grätzel M. Nature, 1991, 353: 737-740

[1] 李良春, 郑仁林, 黄毅, 孙荣琴. 多组分自组装小分子水凝胶中的自分类组装[J]. 化学进展, 2023, 35(2): 274-286.
[2] 王萌, 宋贺, 李烨文. 三维自组装蓝相液晶光子晶体[J]. 化学进展, 2022, 34(8): 1734-1747.
[3] 韩冬雪, 金雪, 苗碗根, 焦体峰, 段鹏飞. 超分子组装体激发态手性的响应性[J]. 化学进展, 2022, 34(6): 1252-1262.
[4] 尹航, 李智, 郭晓峰, 冯岸超, 张立群, 汤华燊. RAFT链转移剂的选用原则及通用型RAFT链转移剂[J]. 化学进展, 2022, 34(6): 1298-1307.
[5] 刘玉玲, 胡腾达, 李伊莲, 林洋, Borsali Redouane, 廖英杰. 嵌段共聚物薄膜快速自组装方法[J]. 化学进展, 2022, 34(3): 609-615.
[6] 李红, 史晓丹, 李洁龄. 肽自组装水凝胶的制备及在生物医学中的应用[J]. 化学进展, 2022, 34(3): 568-579.
[7] 陈雅琼, 宋洪东, 吴懋, 陆扬, 管骁. 蛋白质-多糖复合体系在活性物质传递中的应用[J]. 化学进展, 2022, 34(10): 2267-2282.
[8] 林建云, 罗时荷, 杨崇岭, 肖颖, 杨丽庭, 汪朝阳. 生物基高分子型止血材料和伤口敷料[J]. 化学进展, 2021, 33(4): 581-595.
[9] 闫楚璇, 李青璘, 巩正奇, 陈颖芝, 王鲁宁. 纳米有机半导体光催化剂[J]. 化学进展, 2021, 33(11): 1917-1934.
[10] 冯业娜, 刘书河, 张书博, 薛彤, 庄鸿麟, 冯岸超. 基于聚合诱导自组装制备二氧化硅/聚合物纳米复合材料[J]. 化学进展, 2021, 33(11): 1953-1963.
[11] 茅瓅波, 高怀岭, 孟玉峰, 杨玉露, 孟祥森, 俞书宏. 凝聚态化学视角下的生物矿化[J]. 化学进展, 2020, 32(8): 1086-1099.
[12] 桑艳华, 潘海华, 唐睿康. 生物矿化中的凝聚态化学[J]. 化学进展, 2020, 32(8): 1100-1114.
[13] 王子瑄, 王跃飞, 齐崴, 苏荣欣, 何志敏. DNA-多肽复合分子的设计、组装与应用[J]. 化学进展, 2020, 32(6): 687-697.
[14] 智康康, 杨鑫. 天然产物凝胶及其凝胶质[J]. 化学进展, 2019, 31(9): 1314-1328.
[15] 林代武, 邢起国, 王跃飞, 齐崴, 苏荣欣, 何志敏. 多肽超分子手性自组装与应用[J]. 化学进展, 2019, 31(12): 1623-1636.