English
新闻公告
More
化学进展 2013, Vol. 25 Issue (05): 799-808 DOI: 10.7536/PC121022 前一篇   后一篇

• 综述与评论 •

荧光金纳米团簇在小分子化合物检测中的应用

晏菲, 刘向洋, 赵冬娇, 包炜幸, 董晓平, 奚凤娜*   

  1. 浙江理工大学化学系 先进纺织材料与制备技术教育部重点实验室 杭州 310018
  • 收稿日期:2012-10-01 修回日期:2012-12-01 出版日期:2013-05-24 发布日期:2013-04-15
  • 通讯作者: 奚凤娜 E-mail:xx19811981@126.com
  • 基金资助:

    国家自然科学基金项目(No. 21001093)和浙江省自然科学基金项目(Y4110418)资助

Application of Fluorescent Gold Nanoclusters for the Determination of Small Molecules

Yan Fei, Liu Xiangyang, Zhao Dongjiao, Bao Weixing, Dong Xiaoping, Xi Fengna*   

  1. 1. Department of Chemistry, Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, Zhejiang Sci-Tech University, Zhejiang 310018, China
  • Received:2012-10-01 Revised:2012-12-01 Online:2013-05-24 Published:2013-04-15

金纳米团簇(gold nanoclusters,Au NCs)是一种新型的荧光纳米材料,由几个到几百个原子组成,尺寸接近于电子的费米波长。由于量子尺寸效应,金纳米团簇显示出独特的光学特性。荧光金纳米团簇具有尺寸小、水溶性好、光物理性质好、比表面积大、表面易于修饰以及荧光性质随尺寸可调等优点,是近年来的研究热点。通过改变配体或者生物支架合成的各种荧光金纳米团簇,在传感检测、纳米标记、医学成像和光电子学等领域具有潜在的应用前景。作为新型荧光探针,荧光金纳米团簇已成功用于对阳离子、阴离子及重要的生物活性物质如过氧化氢、葡萄糖、谷胱甘肽、三磷酸腺苷、氨基酸等小分子化合物的检测。本文结合当前的研究现状,介绍了金纳米团簇在小分子化合物荧光检测中的应用,并简要评述了金纳米团簇研究中所面临的挑战及应用前景。

Gold nanoclusters are composed of several to a hundred atoms. As a kind of fluorescent materials, gold nanoclusters have recently attracted significant attention because they provide the link between atom and nanoparticle. Gold nanoclusters exhibit unique optical properties due to quantum effect as their sizes are close to the Femi wavelength of electrons. Fluorescent gold nanoclusters have attractive characteristics such as small size, good water solubility, remarkable photophysical properties, large surface area, and facile surface modification. Recently, a variety of synthesis approaches for the preparation of water-soluble fluorescent gold nanoclusters have been developed, which significantly facilitate the understanding of their properties and applications. It has been proven that the fluorescent properties of gold nanoclusters could be adjustable by using suitable ligands and biocompatible scaffolds. Until now, fluorescence gold nanoclusters have shown potential applications in the fields of biosensors, nano-labeling, molecular imaging and optoelectronics. As a novel class of fluorescent probe, fluorescent gold nanoclusters have been used for the sensing of small molecules. In this review, we highlight the recent advances in fluorescene determination of metal ions, anions, and the biological organic molecules including hydrogen peroxide, glucose, glutathione, adenosine triphosphate, and amino acids. The current challenges and future perspectives in this research area are also outlined. Contents
1 Introduction
2 Application of gold nanoclusters in sensing of small molecules
2.1 Detection of metal ions
2.2 Detection of anions
2.3 Detection of small organic molecules
3 Conclusion and outlook

中图分类号: 

()

[1] Zheng J, Zhang C, Dickson R M. Phys. Rev. Lett., 2004, 93: art. no. 077402
[2] Mooradian A. Phys. Rev. Lett., 1969, 22: 185-187
[3] Huang C C, Yang Z, Lee K H, Chang H T. Angew. Chem. Int. Ed., 2007, 46: 6824-6828
[4] Zheng J, Petty J T, Dickson R M. J. Am. Chem. Soc., 2003, 125: 7780-7781
[5] Chen W Y, Lan G Y, Chang H T. Anal. Chem., 2011, 83: 9450-9455
[6] Xie J, Zheng Y, Ying J Y. J. Am. Chem. Soc., 2009, 131: 888-889
[7] Zheng J, Nicovich P R, Dickson R M. Annu. Rev. Phys. Chem., 2007, 58: 409-431
[8] Michalet X, Pinaud F F, Bentolila L A, Tsay J M, Doose S, Li J J, Sndaresan G, Wu A M, Gambhir S S, Weiss S. Science, 2005, 307: 538-544
[9] Yan J, Estévez M C, Smith J E, Wang K, He X, Wang L, Tan W. Nanotoday, 2007, 2: 44-50
[10] Chatterjee D K, Gnanasammandhan M K, Zhang Y. Small, 2010, 6: 2781-2795
[11] Baker S N, Baker G A. Angew. Chem. Int. Ed., 2010, 49: 6726-6744
[12] 杨小超(Yang X C), 钱俊臻(Qian J Z), 万巧玲(Wan Q L), 莫志宏(Mo Z H). 化学进展(Progress in Chemistry), 2007, 19(5): 689-694
[13] 杨群峰(Yang Q F), 刘建云(Liu J Y), 陈华萍(Chen H P), 王显祥(Wang X X), 黄乾明(Huang Q M), 单志(Shan Z). 化学进展(Progress in Chemistry), 2011, 23(5): 879-891
[14] 任娟(Ren J), 代雯乐(Dai W L), 付欣(Fu X), 苏梦(Su M), 蔡晶晶(Cai J J), 马占芳(Ma Z F). 化学通报(Chemistry), 2011, 74(8): 683-687
[15] 刘钊(Liu Z), 金申申(Jin S S), 朱满洲(Zhu M Z). 化学进展(Progress in Chemistry), 2011, 23(10): 2055-2064
[16] Shiang Y C, Huang C C, Chen W Y, Chen P C, Chang H T. J. Mater. Chem., 2012, 22: 12972-12982
[17] Lin C A J, Lee C H, Hsieh J T, Wang H H, Li J K, Shen J L, Chan W H, Yeh H I, Chang W H. J. Med. Biol. Eng., 2009, 29: 276-283
[18] Jin R. Nanoscale, 2010, 2: 343-362
[19] Shang L, Dong S, Nienhaus G U. Nano Today, 2011, 6: 401-418
[20] Zheng J, Zhou C, Yu M, Liu J. Nanoscale, 2012, 4: 4073-4083
[21] Shang L, Nienhaus G U. Biophys. Rev., 2012, 4(4): 313-322
[22] Xavier P L, Chaudhari K, Baksi A, Pradeep T. Nano Reviews, 2012, 3: art. no. 14767
[23] Xie J, Zheng Y, Ying J Y. Chem. Commun., 2010, 46: 961-963
[24] Hu D, Sheng Z, Gong P, Zhang P, Cai L. Analyst, 2010, 135: 1411-1416
[25] Chai F, Wang T, Li L, Liu H, Zhang L, Su Z, Wang C. Nanoscale Res. Lett., 2010, 5: 1856-1860
[26] Wei H, Wang Z, Yang L, Tian S, Hou C, Lu Y. Analyst, 2010, 135: 1406-1410
[27] Lin Y H, Tseng W L. Anal. Chem., 2010, 82: 9194-9200
[28] Kawasaki H, Yoshimura K, Hamaguchi K, Arakawa R. Anal. Sci., 2011, 27: 591-596
[29] Kawasaki H, Hamaguchi K, Osaka I, Arakawa R. Adv. Funct. Mater., 2011, 21: 3508-3515
[30] Pu K Y, Luo Z, Li K, Xie J, Liu B. J. Phys. Chem. C, 2011, 115: 13069-13075
[31] Paau M C, Lo C K, Yang X, Choi M M F. J. Phys. Chem. C, 2010, 114: 15995-16003
[32] Shang L, Yang L, Stockmar F, Popescu R, Trouillet V, Bruns M, Gerthsen D, Nienhaus G U. Nanoscale, 2012, 4: 4155-4160
[33] Shao C Y, Yuan B, Wang H Q, Zhou Q, Li Y L, Guan Y F, Deng Z X. J. Mater. Chem., 2011, 21: 2863-2866
[34] Cai Y, Yan L, Liu G, Yuan H, Xiao D. Biosens. Bioelectron., 2013, 41:875-879
[35] Chen W, Tu X, Guo X. Chem. Commun., 2009, 1736-1738
[36] Tu X, Chen W, Guo X. Nanotechnology, 2011, 22: art. no. 095701
[37] Durgadas C V, Sharma C P, Sreenivasan K. Analyst, 2011, 136: 933-940
[38] Muhammed M A H, Verma P K, Pal S K, Retnakumari A, Koyakutty M, Nair S, Pradeep T. Chem. Eur. J., 2010, 16: 10103-10112
[39] Lin Z, Luo F, Dong T, Zheng L, Wang Y, Chi Y, Chen G. Analyst, 2012, 137: 2394-2399
[40] He D F, Xiang Y, Wang X, Yu X F. Mater. Res. Bull., 2011, 46: 2418-2421
[41] Liu H, Zhang X, Wu X, Jiang L, Burda C, Zhu J J. Chem. Commun., 2011, 47: 4237-4239
[42] Zheng H Z, Liu L, Zhang Z J, Huang Y M, Zhou D B, Hao J Y, Lu Y H, Chen S M. Spectrochim. Acta A, 2009, 71: 1795-1798
[43] Yuan Z, Peng M, He Y, Yeung E S. Chem. Commun., 2011, 47: 11981-11983
[44] Fang Y M, Song J, Li J, Wang Y W, Yang H H, Sun J J, Chen G N. Chem. Commun., 2011, 47: 2369-2371
[45] Ho J A, Chang H C, Su W T. Anal. Chem., 2012, 84: 3246-3253
[46] Yue Y, Liu T Y, Li H W, Liu Z, Wu Y. Nanoscale, 2012, 4: 2251-2254
[47] Roy S, Palui G, Banerjee A. Nanoscale, 2012, 4: 2734-2740
[48] Liu Y, Ai K, Cheng X, Huo L, Lu L. Adv. Funct. Mater., 2010, 20: 951-956
[49] Yan L, Cai Y, Zheng B, Yuan H, Guo Y, Xiao D, Choi M M F. J. Mater. Chem., 2012, 22: 1000-1005
[50] Shiang Y C, Huang C C, Chang H T. Chem. Commun., 2009, 3437-3439
[51] Jin L, Shang L, Guo S, Fang Y, Wen D, Wang L, Yin J, Dong S. Biosens. Bioelectron., 2011, 26: 1965-1969
[52] Wen F, Dong Y, Feng L, Wang S, Zhang S, Zhang X. Anal. Chem., 2011, 83: 1193-1196
[53] Liu A, Dong W, Liu E, Tang W, Zhu J, Han J. Electrochim. Acta, 2010, 55: 1971-1977
[54] Priya C, Sivasankari G, Narayanan S S. Colloid. Surface. B, 2012, 97: 90-96
[55] Hussain A M P, Sarangi S N, Kesarwani J A, Sahu S N. Biosens. Bioelectron., 2011, 29: 60-65
[56] Chen T H, Tseng W L. Small, 2012, 8: 1912-1919
[57] Tian D, Qian Z, Xia Y, Zhu C. Langmuir, 2012, 28: 3945-3951
[58] Liu J M, Yan X P. Biosens. Bioelectron., 2012, 36: 135-141
[59] Li P H, Lin J Y, Chen C T, Ciou W R, Chan P H, Luo L, Hsu H Y, Diau E W G, Chen Y C. Anal. Chem., 2012, 84: 5484-5488
[60] Wang M, Mei Q, Zhang K, Zhang Z. Analyst, 2012, 137: 1618-1623
[61] He Y, Wang X, Zhu J, Zhong S, Song G. Analyst, 2012, 137: 4005-4009
[62] Cui M L, Liu J M, Wang X X, Lin L P, Jiao L, Zhang L H, Zheng Z Y, Lin S Q. Analyst, 2012, 137: 5346-5356. DOI: 10.1039/c2an36284h
[63] Chen Z, Qian S, Chen X, Gao W, Lin Y. Analyst, 2012, 137: 4356-4361
[64] Wang X, Wu P, Lv Y, Hou X. Microchem. J., 2011, 99: 327-331
[65] Chen Z, Qian S, Chen J, Cai J, Wu S, Cai Z. Talanta, 2012, 94: 240-245
[66] Samari F, Hemmateenejad B, Rezaei Z, Shamsipur M. Anal. Methods, 2012, 4: 4155-4160
[67] Li L, Liu H, Shen Y, Zhang J, Zhu J. Anal. Chem., 2011, 83: 661-665

[1] 陈戈慧, 马楠, 于帅兵, 王娇, 孔金明, 张学记. 可卡因免疫及适配体生物传感器[J]. 化学进展, 2023, 35(5): 757-770.
[2] 鲍艳, 许佳琛, 郭茹月, 马建中. 基于微纳结构的高灵敏度柔性压力传感器[J]. 化学进展, 2023, 35(5): 709-720.
[3] 赵京龙, 沈文锋, 吕大伍, 尹嘉琦, 梁彤祥, 宋伟杰. 基于人体呼气检测应用的气体传感器[J]. 化学进展, 2023, 35(2): 302-317.
[4] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[5] 钟衍裕, 王正运, 刘宏芳. 抗坏血酸电化学传感研究进展[J]. 化学进展, 2023, 35(2): 219-232.
[6] 赖燕琴, 谢振达, 付曼琳, 陈暄, 周戚, 胡金锋. 基于1,8-萘酰亚胺的多分析物荧光探针的构建和应用[J]. 化学进展, 2022, 34(9): 2024-2034.
[7] 王克青, 薛慧敏, 秦晨晨, 崔巍. 二苯丙氨酸二肽微纳米结构的可控组装及应用[J]. 化学进展, 2022, 34(9): 1882-1895.
[8] 卢继洋, 汪田田, 李湘湘, 邬福明, 杨辉, 胡文平. 电喷印刷柔性传感器[J]. 化学进展, 2022, 34(9): 1982-1995.
[9] 李立清, 郑明豪, 江丹丹, 曹舒心, 刘昆明, 刘晋彪. 基于邻苯二胺氧化反应的生物分子比色/荧光探针[J]. 化学进展, 2022, 34(8): 1815-1830.
[10] 周宇航, 丁莎, 夏勇, 刘跃军. 荧光探针在半胱氨酸检测的应用[J]. 化学进展, 2022, 34(8): 1831-1862.
[11] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[12] 姜鸿基, 王美丽, 卢志炜, 叶尚辉, 董晓臣. 石墨烯基人工智能柔性传感器[J]. 化学进展, 2022, 34(5): 1166-1180.
[13] 颜范勇, 臧悦言, 章宇扬, 李想, 王瑞杰, 卢贞彤. 检测谷胱甘肽的荧光探针[J]. 化学进展, 2022, 34(5): 1136-1152.
[14] 林瑜, 谭学才, 吴叶宇, 韦富存, 吴佳雯, 欧盼盼. 二维纳米材料g-C3N4在电化学发光中的应用研究[J]. 化学进展, 2022, 34(4): 898-908.
[15] 赵惠, 胡文博, 范曲立. 双光子荧光探针在生物传感中的应用[J]. 化学进展, 2022, 34(4): 815-823.