English
新闻公告
More
化学进展 2013, Vol. 25 Issue (05): 775-784 DOI: 10.7536/PC120723 前一篇   后一篇

• 综述与评论 •

刺激响应型聚合物前药

任天斌, 侠文娟, 吴畏, 李永勇*   

  1. 同济大学材料科学与工程学院先进材料与纳米生物医学研究院 上海 200092
  • 收稿日期:2012-07-01 修回日期:2012-11-01 出版日期:2013-05-24 发布日期:2013-04-15
  • 通讯作者: 李永勇 E-mail:yongyong_li@tongji.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.21004045, 51173136, 51073121, 21104059)和中央高校基本科研业务费专项资金资助

Stimuli-Responsive and Polymeric Prodrugs

Ren Tianbin, Xia Wenjuan, Wu Wei, Li Yongyong*   

  1. School of Material Science and Engineering and Institute for Advanced Materials & Nano Biomedicine, Tongji University, Shanghai 200092, China
  • Received:2012-07-01 Revised:2012-11-01 Online:2013-05-24 Published:2013-04-15

前药(prodrug)是一类经过生物体内转化后才具有药理作用的化合物。与传统纳米药物输送系统相比具有载药率确定、稳定性高、爆释现象小等优点。但是,前药本身也面临着可控性,特异性释药不足而引起效果不佳等问题。因此,能够靶向病灶部位并能够针对病灶部位进行特异性释药的刺激敏感型前药受到广泛研究。本文以国内外学者及本课题组的研究成果为基础,以肿瘤部位特殊的生理环境为背景,综述了近年来pH敏感、温敏、氧化还原敏感、酶敏感等生物刺激响应型抗肿瘤聚合物前药的研究进展。

Prodrugs represent the compounds that can convert to the bioactive drugs under in vitro or in vivo environment after administration, which have received intensive and extensive attention in the past decades. Among them, several of clinical successes have been achieved, disclosing the promising future of prodrugs. As compared with the conventional nanoscaled drug delivery system, prodrug provides the merits of the high and constant drug efficiency, high stability in blood circulation and low burst release. Nonetheless, critical challenges remain in the development of prodrugs aiming at clinical benefit, mainly including the inability of controlled and targeted drug release. Prodrugs that can selectively release the carried drug specific to microenvironment of lesion site emerges as a powerful strategy to address the above issues. These prodrugs are structurally polymeric and the mechanism of the design is generally based on the physical (pH, temperature) or biological (enzyme, glutathione concentration) stimulus. Herein, we present an overview of the recent work on stimuli-responsive anticancer polymeric prodrugs, including pH-sensitive, redox sensitive and enzyme digestion, based on the domestic and international research progress. In addition, recent advances and future directions in the development of stimuli-responsive and polymeric prodrugs are also included. Contents
1 Introduction
2 Stimuli-responsive polymeric prodrugs
2.1 pH-sensitive polymeric prodrugs
2.2 Temperature-sensitive polymeric prodrugs
2.3 Redox-sensitive polymeric prodrugs
2.4 Enzyme-sensitive polymeric prodrugs
2.5 Other polymeric prodrugs
3 Conclusion and outlook

中图分类号: 

()

[1] Samorí C, Ali-Boucetta H, Sainz R, Guo C, Toma F M, Fabbro C, da Ros T, Prato M, Kostarelos K, Bianco A. Chem. Commun., 2010, 1494-1496
[2] Shen Y Q, Jin E, Zhang B, Murphy C J, Sui M H, Zhao J, Wang J Q, Tang J B, Fan M H, Kirk E V, Murdoch W J. J. Am. Chem. Soc., 2010, 132: 4259-4265
[3] Kaminskas L M, Kelly B D, McLeod V M, Sberna G, Boyd B J, Owen D J, Porter C J H. Mol. Pharm., 2011, 8: 338-349
[4] Zhou L, Cheng R, Tao H Q, Ma S B, Guo W W, Meng F H, Liu H Y, Liu Z, Zhong Z Y. Biomacromolecules, 2011, 12: 1460-1467
[5] Vlerken van L E, Duan Z, Seiden M V, Amiji M M. Cancer Res., 2007, 67: 4843-4850
[6] Yu Y, Zou J, Yu L, Ji W, Li Y K, Law W C, Cheng C. Macromolecules, 2011, 44: 4793-4800
[7] Ryser H J P, Shen W C. Cancer, 1980, 45: 1207-1211
[8] Navath R S, Wang B, Kannan S, Romero R, Kannan R M. J. Control. Release, 2010, 142: 447-456
[9] Duncan R. Nat. Rev. Cancer, 2006, 6: 688-701
[10] Gillies E R, Jonsson T B, Frechet J M J. J. Am. Chem. Soc., 2004, 126: 11936-11943
[11] Chatterjee S, Ramakrishnan S. Macromolecules, 2011, 44: 4658-4664
[12] Duong H T T, Marquis C P, Whittaker M, Davis T P, Boyer C. Macromolecules, 2011, 44: 8008-8019
[13] Kaneko T, Willner D, MonkovEc I, Knipe J O, Braslawsky G R, Greenfield R S, Vyas D M. Bioconjugate Chem., 1991, 2: 133-141
[14] Yang X Y, Grailer J J, Pilla S, Steeber D A, Gong S Q. Bioconjugate Chem., 2010, 21: 496-504
[15] Xiong X B, Ma Z S, Lai R, Lavasanifar A. Biomaterials, 2010, 31: 757-768
[16] Etrych T, Jelínkova M, Ríhova B, Ulbrich K. J. Control Release, 2001, 73: 89-102
[17] Ríhova B, Etrych T, Pechar M, Jelínkova M, Stastny M, Hovorka O, Kovar M, Ulbrich K. J. Control. Release, 74: 225-232
[18] Guan H L, McGuire M J, Li S Z, Brown K C. Bioconjugate Chem., 2008, 19: 1813-1821
[19] Etrych T, Mrkvan T, Chytil P, Konak C, Ríhova B, Ulbrich K. J. Appl. Polym. Sci., 2008, 109: 3050-3061
[20] Kovar L, Etrych T, Kabesova M, Subr V, Vetvicka D, Hovorka O, Strohalm J, Sklenar J, Chytil P, Ulbrich K, Rihova B. Tumor Biol., 2010, 31: 233-242
[21] Harada M, Bobe L, Saito H, Shibata N, Tanaka R, Hayashi T, Kato Y. Cancer Sci., 2011, 102: 192-199
[22] Aryal S, Hu C M J, Zhang L F. ACS Nano, 2010, 4: 251-258
[23] Alani A W G, Bae Y, Rao D A, Kwon G S. Biomaterials, 2010, 31: 1765-1772
[24] Zhan F X, Chen W, Wang Z J, Lu W T, Cheng R, Deng C, Meng F H, Liu H Y, Zhong Z Y. Biomacromolecules, 2011, 12: 3612-3620
[25] Etrych T, Kov? L, Strohalm J, Chytil P, 韍ov? B, Ulbrich K. J. Control. Release, 2011, 154: 241-248
[26] Ríhova B, Etrych T, Sírova M, Kovar L, Hovorka O, Kovar M, Benda A, Ulbrich K. Mol. Pharm., 2010, 7: 1027-1040
[27] Bobe I, Shibata N, Saito H, Harada M, Mitsunori H, Shibata N, Bobe L. WO 2008047948-A1, 2008
[28] Schmaljohann D. Adv. Drug Delivery Rev., 2006, 58: 1655-1670
[29] Talelli M, Rijcken C J F, van Nostrum C F, Storm G, Hennink W E. Adv. Drug Delivery Rev., 2010, 62: 231-239
[30] Van Nostrum C F, Neradovic D, Soga O, Hennink W E. ACS Sympos. Ser., 2006, 923: 40-54
[31] Talelli M, Iman M, Varkouhi A K, Rijcken C J F, Schiffelers R M, Etrych T, Ulbrich K, van Nostrum C F, Lammers T, Storm G, Hennink W E. Biomaterials, 2010, 31: 7797-7804
[32] Talelli M, Morita K, Rijcken C J F, Aben R W M, Lammers T, Scheeren H W, van Nostrum C F, Storm G, Hennink W E. Bioconjugate Chem., 2011, 22: 2519-2530
[33] Dreher M R, Raucher D, Balu N, Colvin O M, Ludeman S M, Chilkoti A. J. Control. Release, 2003, 91: 31-43
[34] Meyer D E, Kong G A, Dewhirst M W, Zalutsky M R, Chilkoti A. Cancer Res., 2001, 61: 1548-1554
[35] Raucher D, Chilkoti A. Cancer Res., 2001, 61: 7163-7170
[36] Furgeson D Y, Dreher M R, Chilkoti A. J. Control. Release, 2006, 110: 362-369
[37] Kuppusamy P, Afeworki M, Shankar R A, Coffin D, Krishna M C, Hahn S M, Mitchell J B, Zweier J L. Cancer Res., 1998, 58: 1562-1568
[38] Kuppusamy P, Li H, Ilangovan G, Cardounel A J, Zweier J L, Yamada K, Krishna M C, Mitchell J B. Cancer Res., 2002, 62: 307-312
[39] Thorpe P E, Wallace P M, Knowles P P, Relf M G, Brown A N F, Watson G J, Knyba R E, Wawrzynczak E J, Blakey D C. Cancer Res., 1987, 47: 5924-5931
[40] Navath R S, Kurtoglu Y E, Wang B, Kannan S, Romero R, Kannan R M. Bioconjugate Chem., 2008, 19: 2446-2455
[41] Kurtoglu Y E, Navath R S, Wang B, Kannan S, Romero R, Kannan R M. Biomaterials, 2009, 30: 2112-2121
[42] Wang B, Navath R S, Romero R, Kannan S, Kannan R. Int. J. Pharm., 2009, 377: 159-168
[43] Menjoge A R, Kannan R M, Tomalia D A. Drug Discovery Today, 2010, 15: 171-185
[44] Navath R S, Wang B, Kannan S, Romero R, Kannan R M. J. Control. Release, 2010, 142: 447-456
[45] Oishi M, Hayama T, Akiyama Y, Takae S, Harada A, Yamasaki Y, Nagatsugi F, Sasaki S, Nagasaki Y, Kataoka K. Biomacromolecules, 2005, 6: 2449-2454
[46] Li X Q, Wen H Y, Dong H Q, Xue W M, Pauletti G M, Cai X J, Xia W J, Shi D L, Li Y Y. Chem. Commun., 2011, 8647-8649
[47] Yang J, Liu W W, Sui M H, Tang J B, Shen Y Q. Biomaterials, 2011, 32: 9136-9143
[48] Rejmanov? P, Kopecek J, Pohl J, Baudys M, Kostka V. Die Makromolekulare Chemie, 1983, 184: 209-220
[49] Kopecek J. Biomaterials, 1984, 5: 19-24
[50] Calder髇 M, Graeser R, Kratz F, Haag R. Bioorganic & Medicinal Chemistry Letters, 2009, 19: 3725-3728
[51] Law B, Tung C H. Bioconjugate Chem., 2009, 20: 1683-1695
[52] de Groot F M, Loos W J, Koekkoek R, van Berkom L W, Busscher G F, Seelen A E, Albrecht C, de Bruijn P, Scheeren H W. J. Org. Chem., 2001, 66: 8815-8830
[53] Ajaj K A, Biniossek M L, Kratz F. Bioconjugate Chem., 2009, 20: 390-396
[54] Graaf M D, Nevalainen T J, Scheeren H W, Pinedo H M, Haisma H J, Boven E. Biochem. Pharmacol., 2004, 68: 2273-2281
[55] Choi S K, Thomas T, Li M H, Kotlyar A, Desai A, Baker J R Jr. Chem. Commun., 2010, 46: 2632-2634
[56] Johnson J A, Lu Y Y, Burts A O, Xia Y, Durrell A C, Tirrell D A, Grubbs R H. Macromolecules, 2010, 43: 10326-10335
[57] Zhang Y H, Thomas T P, Desai A, Zong H, Leroueil P R, Majoros I J, Baker J R Jr. Bioconjugate Chem., 2010, 21: 489-495
[58] Li G L, Liu J Y, Pang Y, Wang R B, Mao L M, Yan D Y, Zhu X Y, Sun J. Biomacromolecules, 2011, 12: 2016-2026

[1] 张婉萍, 刘宁宁, 张倩洁, 蒋汶, 王梓鑫, 张冬梅. 刺激响应性聚合物微针系统经皮药物递释[J]. 化学进展, 2023, 35(5): 735-756.
[2] 顾顺心, 姜琴, 施鹏飞. 发光铱(Ⅲ)配合物抗肿瘤活性研究及应用[J]. 化学进展, 2022, 34(9): 1957-1971.
[3] 李姝慧, 李倩倩, 李振. 从单分子到分子聚集态科学[J]. 化学进展, 2022, 34(7): 1554-1575.
[4] 韩冬雪, 金雪, 苗碗根, 焦体峰, 段鹏飞. 超分子组装体激发态手性的响应性[J]. 化学进展, 2022, 34(6): 1252-1262.
[5] 仲宣树, 刘宗建, 耿雪, 叶霖, 冯增国, 席家宁. 材料表面性质调控细胞黏附[J]. 化学进展, 2022, 34(5): 1153-1165.
[6] 钟琴, 周帅, 王翔美, 仲维, 丁晨迪, 傅佳骏. 介孔二氧化硅基智能递送体系的构建及其在各类疾病治疗中的应用[J]. 化学进展, 2022, 34(3): 696-716.
[7] 王萌, 宋贺, 祝伊飞. 智能响应蓝相液晶光子晶体[J]. 化学进展, 2022, 34(12): 2588-2603.
[8] 李庚, 李洁, 姜泓宇, 梁效中, 郭鹍鹏. 力刺激响应发光聚合物[J]. 化学进展, 2022, 34(10): 2222-2238.
[9] 陈永杭, 李欣芳, 余伟江, 王幽香. 刺激响应聚合物微针在经皮给药中的应用[J]. 化学进展, 2021, 33(7): 1152-1158.
[10] 荆晓东, 孙莹, 于冰, 申有青, 胡浩, 丛海林. 肿瘤微环境响应药物递送系统的设计[J]. 化学进展, 2021, 33(6): 926-941.
[11] 王欣瑜, 赵富平, 张儒, 孙子茹, 刘胜男, 高清志. 抗肿瘤缺氧诱导因子-1的小分子抑制剂[J]. 化学进展, 2021, 33(12): 2259-2269.
[12] 杨强强, 李川, 于淑娴, 范书华, 王月霞, 洪敏. 纳米载体在共负载siRNA及化疗药物对逆转肿瘤多药耐药性方面的应用[J]. 化学进展, 2021, 33(10): 1900-1916.
[13] 官启潇, 郭和泽, 窦红静. 细胞膜修饰的纳米载体与肿瘤免疫治疗[J]. 化学进展, 2021, 33(10): 1823-1840.
[14] 穆蒙, 宁学文, 罗新杰, 冯玉军. 刺激响应性聚合物微球的制备、性能及应用[J]. 化学进展, 2020, 32(7): 882-894.
[15] 吴晴, 唐一源, 余淼, 张悦莹, 李杏梅. 基于肿瘤微环境响应的DNA纳米结构递药系统[J]. 化学进展, 2020, 32(7): 927-934.
阅读次数
全文


摘要

刺激响应型聚合物前药