English
新闻公告
More
化学进展 2013, Vol. 25 Issue (05): 735-743 DOI: 10.7536/PC120817 前一篇   后一篇

• 综述与评论 •

多阶有序多孔炭的软模板法合成与结构控制

吴优, 赵鑫, 赵莹, 刘守新*   

  1. 东北林业大学生物质材料教育部重点实验室 哈尔滨 150040
  • 收稿日期:2012-08-01 修回日期:2012-11-01 出版日期:2013-05-24 发布日期:2013-04-15
  • 通讯作者: 刘守新 E-mail:liushouxin@126.com
  • 基金资助:

    国家自然科学基金项目(No.31170545)、教育部博士点基金项目(No.20100062110003)和中央高校基本科研业务费项目(No.DL11EB01)资助

Synthesis and Structure Control of Hierarchical Ordered Porous Carbons via Soft-Templating Methods

Wu You, Zhao Xin, Zhao Ying, Liu Shouxin*   

  1. Key Laboratory of Biological Materials of Ministry of Education, Northeast Forestry University, Harbin 150040, China
  • Received:2012-08-01 Revised:2012-11-01 Online:2013-05-24 Published:2013-04-15

多阶有序多孔炭材料综合了多种多孔炭材料的结构优点,在催化、吸附、储能、电化学等方面具有潜在的重要应用。多阶有序多孔炭材料的合成方法很多,到目前为止,模板法是控制孔结构和调节尺寸的最有效方法。在模板法中,软模板法因为其工艺简单、省时、成本低、环境污染小等优势,近些年来广泛被人们采用。用软模板法合成的多阶有序多孔炭包括:大孔-介孔炭,介孔-微孔炭,介孔-介孔炭,大孔-介孔-微孔炭等。本文对多阶有序多孔炭的软模板法合成与结构控制进行了综述。总结了软模板法在实现上述材料孔结构控制中的影响因素。

Hierarchical ordered porous carbon (HOPC) which include macro-mesopore, micro-mesopore, meso-mesopore and macro-meso-micropore carbons, exhibited great potential in the fields of catalysis, adsorption, energy storage and electrochemistry due to the advantages of combined multiple porous structure. By now, various preparation methods for hierarchical ordered porous carbon have been reported. Among them, templating method which could control pore structure and adjust pore dimension is the most effective. For templating method, soft-templating method was simple, timesaving, low cost and less pollution and has been widely employed in recent years. Soft-templating preparation method for hierarchical ordered porous carbon, especially evaporation induced self-assembly (EISA) method and structure control strategy are reviewed. Block copolymer is a kind of soft-template which plays a role as pore-forming. In this paper, interaction of block copolymers with carbon precursors for the production of hierarchical porous structure is especially reviewed. Factors influencing the pore structure which include dual template, post activation, carbon source and molecular structure of soft template are summarized. Strategy for the control preparation of hierarchical ordered porous carbon via soft templates is proposed. Contents
1 Introduction
2 Type of hierarchical ordered porous carbons
2.1 Macro-mesoporous carbon
2.2 Micro-mesoporous carbon
2.3 Meso-mesoporous carbon
2.4 Others
3 Structure control of hierarchical ordered porous carbons
3.1 Influence of soft-templating agents
3.2 Influence of carbon sources
3.3 Influence of temperature
4 Outlook

中图分类号: 

()

[1] Kyotani T. Carbon, 2000, 38(2): 269-286
[2] Wu Z X, Zhao D Y. Chem. Commun., 2011, 47(12): 3332-3338
[3] Ariga K, Vinu A, Miyahara M, Hill J P, Mori T. J. Am. Chem. Soc., 2007, 129(36): 11022-11023
[4] Gao P, Wang A Q, Wang X D, Zhang T. Chem. Mater., 2008, 20(5): 1881-1888
[5] Lin M L, Huang C C, Lo M Y, Mou C Y. J. Phys. Chem. C, 2008, 112(3): 867-873
[6] Zhou J, Yuan X, Xing W, Si W J, Zhuo S P. New Carbon Materials, 2010, 25(5): 370-375
[7] Liang C D, Dudney N J, Howe J Y. Chem. Mater., 2009, 21(19): 4724-4730
[8] Zhao X C, Wang A Q, Yan J W, Sun G Q, Sun L X, Zhang T. Chem. Mater., 2010, 22(19): 5463-5473
[9] Hu Z, Srinivasan M P, Ni Y. Adv. Mater., 2000, 12(17): 62-65
[10] Ahmadpour A, Do D D. Carbon, 1996, 344(4): 471-479
[11] Yang T, Lua A C. J. Colloid Interface Sci., 2003, 267(2): 408-417
[12] Patel N, Okabe K, Oya A. Carbon, 2002, 40(3): 315-320
[13] Oya A, Kasahara N. Carbon, 2000, 38(8): 1141-1144
[14] Pekala R W. J. Mater. Sci., 1989, 24(9): 3221-3227
[15] Pekala R W, Alviso C T, Kong F M, Hulsey S S. J. Non-Cryst. Solids, 1992, 145: 90-98
[16] Tamai H, Kakii T, Hirota Y, Kummamoto T, Yasuda H. Chem. Mater., 1996, 8(2): 454-462
[17] Oya A, Yoshida S, Alcaniz-Monge J, Linares-Soleno A. Carbon, 1995, 33(8): 1085-1090
[18] Knox J H, Kaur B, Millward G R. J. Chromatogr., 1986, 352(21): 3-25
[19] Liang C D, Li Z J, Dai S. Angew. Chem. Int. Ed., 2008, 47(20): 3696-3717
[20] Yuan Z Y, Su B L. J. Mater. Chem., 2006, 16(7): 663-667
[21] Tiemann M. Chem. Mater., 2008, 20(3): 961-971
[22] Huczko A. Appl. Phys. A, 2000, 70(4): 365-376
[23] Lu A H, Smatt J H, Linden M. Adv. Funct. Mater., 2005, 15(5): 865-871
[24] Deng Y H, Liu C, Yu T, Liu F, Zhang F Q, Wan Y, Zhang L, Wang C H, Tu B, Webley P A, Wang H T, Zhao D Y. Chem. Mater., 2007, 19(13): 3271-3277
[25] Zhao Y, Zheng M B, Cao J M, Ke X F, Liu J S, Chen Y P, Tao J. Materials Letters, 2008, 62(3): 548-551
[26] Wang Z Y, Kiesel E R, Stein A. J. Mater. Chem., 2008, 18(19): 2194-2200
[27] 周颖(Zhou Y), 王志超(Wang Z C), 王春雷(Wang C L), 王六平(Wang L P), 许钦一(Xu Q Y), 邱介山(Qiu J S). 无机材料学报(Journal of Inorganic Materials), 2011, 26(2): 145-148
[28] Huang C H, Doong R A, Gong D, Zhao D Y. Carbon, 2011, 49(9): 3055-3064
[29] Xue C F, Tu B, Zhao D Y. Nano Res., 2009, 2(3): 242-253
[30] Huang Y, Cai H Q, Feng D, Gu D, Deng Y H, Tu B, Wang H T, Webley P A, Zhao D Y. Chem. Commun., 2008, (23): 2641-2643
[31] Xu J M, Wang A Q, Zhang T. Carbon, 2012, 50(3): 1807-1816
[32] Enterría M, Suárez-García F, Martínez-Alonso A, Tascón J M D. Microporous and Mesoporous Materials, 2012, 151: 390-396
[33] Xia K S, Gao Q M, Jiang J H, Hu J. Carbon, 2008, 46(13): 1718-1726
[34] Gorka J, Zawislak A, Choma J, Jaroniec M. Carbon, 2008, 46(8): 1159-1174
[35] Choi M, Ryoo R. J. Mater. Chem., 2007, 17(39): 4204-4209
[36] Yan Y, Wei J, Zhang F G, Meng Y, Tu B, Zhao D Y. Microporous and Mesoporous Materials, 2008, 113: 305-315.
[37] Gorka J, Jaroniec M. Carbon, 2011, 49(1): 154-160
[38] Choma J, Gorka J, Jaroniec M, Zawislak A. Top Catal., 2010, 53(3/4): 283-290
[39] Xing W, Huang C C, Zhou S P, Yuan X, Wang G Q, Hulicova-Jurcakova D, Yan Z F, Lu G Q. Carbon, 2009, 47(7): 1715-1722
[40] Xing W, Zhuo S P, Gao X L. Materials Letters, 2009, 63(15): 1311-1313
[41] Wang G Q, Huang C C, Xing W, Zhuo S P. Electrochimica Acta, 2011, 56: 5459-5463
[42] Wang X, Lee J S, Tsouris C, Depaoli D W, Dai S. J. Mater. Chem., 2010, 20(22): 4602-4608
[43] Liu M X, Gang L H, Tian C, Zhu J C, Xu Z J, Hao Z X, Chen L W. Chinese Chemical Letters., 2009, 20(1): 123-126
[44] Li Q, Jiang R R, Dou Y Q, Wu Z G, Huang T, Feng D, Yang J P, Yu A S, Zhao D Y. Carbon, 2011, 49(4): 1248-1257
[45] Liang Y R, Wu D C, Fu R W. Langmuir, 2009, 25(14): 7783-7785
[46] Huang Y, Cai H Q, Yu T, Zhang F Q, Zhang F, Meng Y, Gu D, Wan Y, Sun X L, Tu B, Zhao D Y. Angew. Chem. Int. Ed., 2007, 46(7): 1089 -1093
[47] Huang Y, Cai H Q, Yu T, Sun X L, Tu B, Zhao D Y. Chem. Asian J., 2007, 2(10): 1282-1289
[48] Liu R, Shi Y F, Wan Y, Meng Y, Zhang F Q, Gu D, Chen Z X, Tu B, Zhao D Y. J. Am. Chem. Soc., 2006, 128(35): 11652-11662
[49] Lee J, Kim J, Lee Y, Yoon S, Oh S M, Hyeon T. Chem. Mater., 2004, 16(17): 3323-3330
[50] Jaroniec M, Gorka J, Choma J, Zawislak A. Carbon, 2009, 47(13): 3034-3040
[51] Meng Y, Gu D, Zhang F Q, Shi Y F, Yang H F, Tu B, Yu C, Zhao D Y. Angew. Chem. Int. Ed., 2005, 44(7): 7053-7059
[52] Yu C Z, Fan J, Tian B Z, Stucky G D, Zhao D Y. J. Phys. Chem. B, 2003, 107(48): 13368-13375
[53] Meng Y, Gu D, Zhang F Q, Shi Y F, Cheng L, Feng D, Wu Z X, Chen Z X, Wan Y, Stein A, Zhao D Y. Chem. Mater., 2006, 18(18): 4447-4464
[54] Deng Y H, Yu T, Wan Y, Shi Y F, Meng Y, Gu D, Zhang L J, Huang Y, Liu C, Wu X J, Zhao D Y. J. Am. Chem. Soc., 2007, 129(6): 1690-1697
[55] Liang C D, Hong K L, Guiochon G A, Mays J W, Dai S. Angew. Chem. Int. Ed., 2004, 43(43): 5785-5789
[56] Kresge C T, Leonowiez M E, Roth W J, Vartuli J C, Beek J S. Nature, 1992, 359: 710-712
[57] Beek J S, Vartuli J C, Roth W J, Leonowicz M E, Kresge C T, Sehmitt K D, Chu C T W, Olson D H, Sheppard E W, Mecullen S B, Higgins J B, Sehlenker J L. J. Am. Chem. Soc., 1992, 114(27): 10834-10843
[58] Zhao D Y, Feng J L, Huo Q S, Melosh N, Fredriekson G H, Chmelka B F, Stueky G D. Science, 1998, 279(5350): 548-552
[59] Zhao D Y, Huo Q S, Feng J L, Chmelka B F, Stueky G D. J. Am. Chem. Soc., 1998, 120(24): 6024-6036
[60] Wan Y, Zhao D Y. Chem. Rev., 2007, 107(70): 2821-2860
[61] Zhang F Q, Meng Y, Gu D, Yan Y, Chen Z X, Tu B, Zhao D Y. Chem. Mater., 2006, 18(22): 5279-5288
[62] Yan Y, Zhang F Q, Meng Y, Tu B, Zhao D Y. Chem. Commun., 2007, (27): 2867-2869
[63] Chu P P, Wu H D. Polymer, 2000, 41(1): 101-109
[64] Liang C D, Dai S. J. Am. Chem. Soc., 2006, 128(16): 5316-5317
[65] Tanaka S, Nishiyama N, Egashira Y, Ueyama K. Chem. Commun., 2005, 16: 2125-2127
[66] Mayes R T, Tsouris T, Kiggans J O Jr, Mahurin S M, DePaoli D W, Dai S. J. Mater. Chem., 2010, 20(39): 8674-8678
[67] Wang R, Li W, Liu S X. J. Mater. Sci., 2012, 47: 1977-1984
[68] Xie M J, Dong H H, Zhang D D, Guo X F, Ding W P. Carbon, 2011, 49(7): 2459-2464
[69] Sebenik A, Osredkar U, Vizovisek I. Polymer, 1981, 22(6): 804-806
[70] Christiansen A W. J. Appl. Poly. Sci., 2000, 75(14): 1760-1768
[71] Górka J, Fenning C, Jaroniec M. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2009, 352(1/3): 113-117
[72] Wan Y, Yang H F, Zhao D Y. Acc. Chem. Res., 2006, 39(7): 423-432

[1] 张安睿, 艾玥洁. 共价有机框架(COFs)材料的结构控制及其在环境化学中的应用[J]. 化学进展, 2020, 32(10): 1564-1581.
[2] 焦成鹏, 黄自力, 张海军, 张少伟. 置换反应制备双金属纳米催化剂[J]. 化学进展, 2015, 27(5): 472-481.
[3] 李盼, 张锦*. 单壁碳纳米管的结构控制生长方法[J]. 化学进展, 2013, 25(0203): 167-178.
[4] 杨应奎 邱胜强 王贤保 解孝林. 碳纳米管的聚合物功能化与结构控制:聚合物接枝碳纳米管*[J]. 化学进展, 2010, 22(04): 684-695.