English
新闻公告
More
化学进展 2013, Vol. 25 Issue (0203): 363-369 DOI: 10.7536/PC120858 前一篇   后一篇

• 综述与评论 •

含环糊精链节的拓扑高分子

白阳, 范晓东*, 穆承广, 杨臻, 王丹, 张海涛   

  1. 空间应用物理与化学教育部重点实验室 陕西省高分子科学与技术重点实验室 西北工业大学理学院 西安 710072
  • 收稿日期:2012-08-01 修回日期:2012-11-01 出版日期:2013-02-24 发布日期:2012-12-28
  • 通讯作者: 范晓东 E-mail:xfand@126.com
  • 基金资助:

    国家自然科学基金项目(No.21274116)资助

Cyclodextrin-Based Topological Macromolecules

Bai Yang, Fan Xiaodong*, Mu Chengguang, Yang Zhen, Wang Dan, Zhang Haitao   

  1. The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi'an 710072, China
  • Received:2012-08-01 Revised:2012-11-01 Online:2013-02-24 Published:2012-12-28

星形、超支化、树枝状、刷状等具有支化拓扑结构的高分子通常具有不同于直链结构高分子的优异性能。将有客体包合功能的环糊精与其结合构筑环糊精拓扑高分子体系,有望在分子识别、基因传输、药控释放等领域得到应用。本文根据高分子拓扑形态的不同,从星形、超支化、树枝状以及其他拓扑形态环糊精聚合物的合成及自组装构筑等方面进行了总结和评述,并在此基础上展望了基于环糊精的拓扑高分子的研究方向和发展趋势。

Branched topological macromolecules, such as star-like, hyperbranched, dendritic and brush-like macromolecules, have many unique properties compared with their linear counterparts. Thus in recent years, when a combination of cyclodextrin (CD) possessing molecule cavities with topological structures is obtained, some important applications in various fields, such as molecular recognition, gene delivery and drug delivery system are endowed. In this article, the investigations and applications on the construction and self-assembly of cyclodextrin-based topological polymers are summarized according to the different topologies. The main content includes four aspects as following: (a) star-like cyclodextrin polymers, (b) hyperbranched cyclodextrin polymers, (c) dendritic cyclodextrin polymers, (d) cyclodextrin polymers with other topologies. In addition, new research trends are also expected based on the progress of this kind of polymer. Contents
1 Introduction
2 Cyclodextrin-based star-like polymers
2.1 Star-like polymers bonding with cyclodextrins
2.2 Star-like polymers from the self-assembly of cyclodextrins
3 Cyclodextrin-based hyperbranched polymers
3.1 Hyperbranched polymers from the self-assembly of cyclodextrins
3.2 Hyperbranched polymers bonding with cyclodextrins
4 Cyclodextrin-based dendritic polymers
4.1 Dendritic polymers bonding with cyclodextrins
4.2 Dendritic polymers from the self-assembly of cyclodextrins
5 Cyclodextrin-based polymers with other topologies
6 Conclusion and outlook

中图分类号: 

()

[1] Davis M E, Brewster M E. Nature Reviews Drug Discovery, 2004, 3: 1023-1035
[2] Vyas A, Saraf S. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2008, 62: 23-42
[3] Wang J, Jiang M. J. Am. Chem. Soc., 2006, 128: 3703-3708
[4] 刘育(Liu Y), 尤长城(You C C), 张衡益(Zhang H Y). 超分子化学——合成受体的分子识别与组装(Supramolecular Chemistry——Molecular Recognition and Assembly of Synthetic Receptors). 天津: 南开大学出版社(Tianjin: Nankai University Press), 2001. 166-170
[5] 陈湧(Chen Y), 刘育(Liu Y). 有机化学(Chin. J. Org. Chem.), 2012, 32: 805-814
[6] 张华承(Zhang H C), 辛飞飞(Xin F F), 李月明(Li Y M), 郝爱友(Hao A W), 安伟(An W), 孙涛(Sun T). 化学进展(Progress in Chemistry), 2012, 22: 2276-2281
[7] Sanchis J, Canal F, Lucas R, Vicent M J. Nanomedicine, 2010, 5(6): 915-935
[8] Matsumura Y, Maeda H. Cancer Research, 1986, 46: 6387-6392
[9] Chen Z C, Tang J B, Shen Y Q, Wang X P. Scientia Sinica Chimica, 2011, 41: 281-303
[10] Gao C, Yan D Y. Prog. Polym. Sci., 2004, 29: 183-275
[11] 田威(Tian W), 范晓东(Fan X D), 孔杰(Kong J), 刘郁杨(Liu Y Y), 张卫红(Zhang W H). 化学进展(Progress in Chemistry), 2010, 22: 669-676
[12] Zhou J W, Ritter H. Polym. Chem., 2010, 1: 1552-1559
[13] Liu Y, Yu L, Chen Y, Zhao Y L, Yang H. J. Am. Chem. Soc., 2007, 129: 10656-10657
[14] Liu Y, Wang H, Liang P, Zhang H Y. Angew. Chem., 2004, 116: 2744-2748
[15] Manankker F, Vermonden T, Nostrum C F, Hennink W E. Biomacromolecules, 2009, 10: 3157-3175
[16] Yuen F, Tam K C. Soft Matter, 2010, 6: 4613- 4630
[17] Liu Y Y, Fan X D. Biomaterials, 2005, 26: 6367- 6374
[18] Xu F J, Zhang Z X, Ping Y, Li J, Kang E T, Neoh K G. Biomacromolecules, 2009, 10: 285-293
[19] Qiu L Y, Wang R J, Zheng C, Jin Y, Jin L Q. Nano Medicine, 2010, 5(2): 193-208
[20] Deng J J, Li N, Mai K J, Yang C, Yan L, Zhang L M. J. Mater. Chem., 2011, 21: 5273-5281
[21] Pang X C, Zhao L, Feng C W, Lin Z Q. Macromolecules, 2011, 44: 7176-7183
[22] 胡晖(Hu H), 范晓东(Fan X D), 黄怡(Huang Y). 高分子学报(Acta Polymerica Sinica), 2004, 6: 805-811
[23] 穆承广(Mu C G), 范晓东(Fan X D), 田威(Tian W), 白阳(Bai Y), 南江琨(Nan J K), 马托梅(Ma T M), 杨光(Yang G). 高等学校化学学报(J. Chem. Chinese U.), 2011, 32: 1896-1903
[24] Mu C G, Fan X D, Tian W, Bai Y, Zhou X. Polym. Chem., 2012, 3: 1137-1149
[25] Miura Y, Narumi A, Matsuya S, Satoh T, Duan Q, Kaga H, Kakuchi T. Journal of Polymer Science Part A: Polymer Chemistry, 2005, 43: 4271-4279
[26] Liu Y Y, Zhong Y B, Nan J K, Tian W. Macromolecules, 2010, 43(24): 10221-10230
[27] Yu S J, Yin Y Z, Zhu J Y, Huang X, Luo Q, Xu J Y, Shen J C, Liu J Q. Soft Matter, 2010, 6: 5342-5350
[28] Ge Z S, Liu H, Zhang Y F, Liu S Y. Macromol. Rapid Commun., 2011, 32: 68-73
[29] Dong R J, Liu Y, Zhou Y F, Yan D Y, Zhu X Y. Polym. Chem., 2011, 2: 2771-2774
[30] Yu S J, Zhang W, Zhu J Y, Yin Y Z, Jin H Y, Zhou L P, Luo Q, Xu J Y, Liu J Q. Macromol. Biosci., 2011, 11: 821-827
[31] Takahashi H, Sawada S, Akiyoshi K. ACS Nano, 2011, 5: 337-345
[32] Liu W, Dong C M. Macromolecules, 2010, 43: 8447-8455
[33] Sun X Y, Zhou Y F, Yan D Y. Macromol. Chem. Phys., 2010, 211: 1940-1946
[34] Jin H B, Zheng Y L, Huang W, Zhou Y F, Yan D Y. Langmuir, 2012, 28: 2066-2072
[35] Chen Y, Zhou L Z, Pang Y, Huang W, Qiu F, Jiang X L, Zhu X Y, Yan D Y. Bioconjugate Chem., 2011, 22: 1162-1170
[36] Zarrabi A, Adeli M, Vossoughi M, Shokrgozar M A. Macromol. Biosci., 2011, 11: 383-390
[37] Tian W, Fan X D, Kong J, Liu T, Liu Y Y, Huang Y, Wang S J, Zhang G B. Macromolecules, 2009, 42: 640-652
[38] Tian W, Fan X D, Kong J, Liu Y Y, Huang Y. Polymer, 2010, 51(12): 2556-2564
[39] Tian W, Lv X Y, Mu C G, Zhang W H, Kong J, Liu Y Y, Fan X D. Journal of Polymer Science Part A: Polymer Chemistry, 2012, 50(4): 759-771
[40] Tian W, Wei X Y, Yang G, Fan X D. Journal of Controlled Realease, 2011, 152: e97-e98
[41] 黄怡(Huang Y), 郑敏燕(Zheng M Y), 王珊(Wang S), 黄万千(Huang W Q), 田威(Tian W), 范晓东(Fan X D), 康琼(Kang Q). 高分子学报(Acta Polymerica Sinica), 2010, 7: 903-909
[42] Newkome G R, Kim H J, Choi K H, Moorefield C N. Macromolecules, 2004, 37: 6268-6274
[43] Adeli M, Kalantari M, Zarnega Z, Kabiri R. RSC Adv., 2012, 2: 2756-2758
[44] Newkome G R, Kotta K K, Moorefield C N. Chem. Eur. J., 2006, 12: 3726-3734
[45] Han J, Zheng S X. Journal of Polymer Science Part A: Polymer Chemistry, 2009, 47: 6894-6907
[46] Xu L Q, Wan D, Gong H F, Neoh K G, Kang E T, Fu G D. Langmuir, 2010, 26: 15376-15382
[47] Wu J Y, Gao C. Macromolecules, 2010, 43: 7139-7146
[48] Munteanu M, Kolb U, Ritter H. Macromol. Rapid Commun., 2010, 31: 616-618
[49] Tao W, Liu Y, Jiang B B, Yu S R, Huang W, Zhou Y F, Yan D Y. J. Am. Chem. Soc., 2012, 134: 762-764
[50] 田威(Tian W), 范晓东(Fan X D), 刘涛(Liu T), 刘郁杨(Liu Y Y), 孙乐(Sun L), 姜敏(Jiang M), 黄怡(Huang Y). 高等学校化学学报(J. Chem. Chinese U.), 2009, 3: 632-637
[51] Tian W, Fan X D, Liu Y Y, Jiang M, Huang Y, Kong J. Journal of Polymer Science Part A: Polymer Chemistry, 2008, 46(15): 5036-5052
[52] Tian W, Fan X D, Kong J, Liu Y Y, Zhang W H, Cheng G W, Jiang M. Macromol. Chem. Phys., 2009, 210: 2107-2121

[1] 李霞, 马红艳, 聂晓娟, 刘旭, 卞成明, 谢龙. 星形环糊精聚合物的制备及其应用[J]. 化学进展, 2020, 32(7): 935-942.
[2] 马明放, 栾天翔, 邢鹏遥, 李兆楼, 初晓晓, 郝爱友. 基于β-环糊精的有机小分子凝胶[J]. 化学进展, 2019, 31(2/3): 225-235.
[3] 赵倩, 李盛华, 刘育*. 环糊精超分子凝胶的构筑及其功能[J]. 化学进展, 2018, 30(5): 673-683.
[4] 沈海民, 武宏科, 史鸿鑫, 纪红兵, 余武斌. 非均相环糊精在水相有机合成反应中的应用[J]. 化学进展, 2015, 27(1): 70-78.
[5] 廖荣强, 刘满朔, 廖霞俐, 杨波. 基于环糊精的智能刺激响应型药物载体[J]. 化学进展, 2015, 27(1): 79-90.
[6] 韩彬, 廖霞俐, 杨波. 基于环糊精的靶向药物传递系统[J]. 化学进展, 2014, 26(06): 1039-1049.
[7] 徐妮为, 刘梦艳, 洪诗斌, 颜蔚, 付继芳, 邓维. 基于环糊精构建的基因载体进展[J]. 化学进展, 2014, 26(0203): 375-384.
[8] 彭了, 冯岸超, 王宏, 张慧娟, 袁金颖. 基于β-环糊精和二茂铁的电压刺激响应体系[J]. 化学进展, 2013, 25(11): 1942-1950.
[9] 谢锐, 杨眉, 程昌敬, 姜晶, 褚良银. 分子识别与温度响应复合智能材料[J]. 化学进展, 2012, 24(0203): 195-202.
[10] 辛飞飞, 张华承, 孙涛, 孔丽, 李月明, 郝爱友. 基于超分子环糊精两亲分子的敏感型囊泡体系[J]. 化学进展, 2012, 24(0203): 414-422.
[11] 孙涛, 李月明, 辛飞飞, 李尚洋, 侯月会, 郝爱友. 基于环糊精和偶氮化合物的光控可逆超分子体系[J]. 化学进展, 2012, 24(01): 70-79.
[12] 张林, 李琳玲, 程丽华, 陈欢林. 环糊精分子管道的制备与应用研究进展[J]. 化学进展, 2011, 23(9): 1936-1944.
[13] 董海青, 李永勇, 李兰, 时东陆. 生物医用类环糊精/聚合物(准)聚轮烷[J]. 化学进展, 2011, 23(5): 914-922.
[14] 张华承, 辛飞飞, 李月明, 郝爱友, 安伟, 孙涛. 超分子环糊精两亲分子[J]. 化学进展, 2010, 22(12): 2276-2281.
[15] 孙涛 张华承 李月明 辛飞飞 孔丽 郝爱友. 基于环糊精和富勒烯偶联体系的新型分子机器*[J]. 化学进展, 2010, 22(11): 2156-2164.
阅读次数
全文


摘要

含环糊精链节的拓扑高分子