English
新闻公告
More
化学进展 DOI: 10.7536/PC120647 前一篇   后一篇

• 综述与评论 •

石墨烯量子点的制备

王娇娇, 冯苗, 詹红兵*   

  1. 福州大学材料科学与工程学院 福州 350108
  • 收稿日期:2012-06-01 修回日期:2012-10-01 出版日期:2013-01-24 发布日期:2012-12-27
  • 通讯作者: 詹红兵 E-mail:hbzhan@fzu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.51172045)、高等学校博士学科点专项科研基金(新教师类)项目(No.20113514120006)和福建省自然科学基金项目(No.2012J05113)资助

Advances in Preparation of Graphene Quantum Dots

Wang Jiaojiao, Feng Miao, Zhan Hongbing*   

  1. College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
  • Received:2012-06-01 Revised:2012-10-01 Online:2013-01-24 Published:2012-12-27

作为石墨烯家族的最新一员,石墨烯量子点(GQDs)除了具有石墨烯的优异性能,还因量子限制效应和边界效应而展现出一系列新的特性,因此吸引了化学、物理、材料和生物等各领域科学家的广泛关注。仅近两三年内,关于这种新型零维材料的研究,在实验和理论方面均取得了极大进展。本文主要介绍制备GQDs的两大类方法——自上而下和自下而上的方法。前者包括水热法、电化学法和化学剥离碳纤维法,后者则主要介绍溶液化学法、超声波法和微波法、可控热解多环芳烃法。另外还对一些制备条件较为苛刻的制备方法如电子束刻蚀法和钌催化富勒烯C60开笼法也作了简要介绍,并对GQDs的应用前景进行了展望。

As the latest member of graphene families, graphene quantum dots(GQDs)have excellent performances conferred by graphene. Besides, it exhibits additional marvelous properties due to quantum confinement and edge effects. So it has attracted more and more attention from scientists in aspects of chemistry, physical, materials, biology and so on. In the past two and three years, significant advances in both the experimental and theoretical fronts have been made for this new sort of zero-dimensional materials. In this paper, we introduce the synthetic methods of GQDs, focusing on two main approaches(top-down and bottom-up). Top-down approach consists of hydrothermal methods, electrochemical strategies and chemical exfoliation of carbon fibers. Bottom-up method mainly involves solution chemistry methods, ultrasonic and microwave preparation and controlled pyrolysis of polycyclic aromatic hydrocarbons. We also give some brief introduce to some special methods such as electro-beam lithography and ruthenium-catalyzed C60 transformation which need harsh preparation conditions, and we make a perspect for the applications of GQDs in the future. Contents
1 Introduction
2 Top-down approach
2.1 Hydrothermal methods
2.2 Electrochemical strategies
2.3 Chemical exfoliation of carbon fibers
3 Bottom-up method
3.1 Solution chemistry methods
3.2 Ultrasonic and microwave methods
3.3 Controlled pyrolysis of polycyclic aromatic hydrocarbons
4 Other methods
4.1 Electron-beam lithography methods
4.2 Ruthenium-catalyzed C60 methods
5 Applications
6 Conclusion and perspectives

中图分类号: 

()

[1] Geim A K. Science, 2009, 324(5934): 1530-1534
[2] Shen J, Zhu Y, Yang X, Li C. Chem. Commun. (Camb), 2012, 48(31): 3686-3699
[3] Qu L, Zhang Z, Zhang J, Chen N. Energy Environ. Sci., 2012, DOI: 10.1039/c2ee22982j
[4] Baker S N, Baker G A. Angewandte Chemie International Edition, 2010, 49(38): 6726-6744
[5] Pan D, Guo L, Zhang J, Xi C, Xue Q, Huang H, Li J, Zhang Z, Yu W, Chen Z, Li Z, Wu M. Journal of Materials Chemistry, 2012, 22(8): 3314-3318
[6] Pan D, Zhang J, Li Z, Wu M. Adv. Mater., 2010, 22(6): 734-738
[7] Shen J, Zhu Y, Chen C, Yang X, Li C. Chemical Communications, 2011, 47(9): 2580-2582
[8] Shen J, Zhu Y, Yang X, Zong J, Zhang J, Li C. New Journal of Chemistry, 2012, 36(1): 97-101
[9] Kosynkin D V, Higginbotham A L, Sinitskii A, Lomeda J R, Dimiev A, Price B K, Tour J M. Nature, 2009, 458(7240): 872-876
[10] Zhou J, Booker C, Li R, Zhou X, Sham T K, Sun X, Ding Z. J. Am. Chem. Soc., 2007, 129(4): 744-745
[11] Zhao Q, Zhang Z, Huang B, Peng J, Zhang M, Pang D. Chemical Communications, 2008, (41): 5116-5118
[12] Zheng L, Chi Y, Dong Y, Lin J, Wang B. J. Am. Chem. Soc., 2009, 131(13): 4564-4565
[13] Lu J, Yang J X, Wang J, Lim A, Wang S, Loh K P. ACS Nano, 2009, 3(8): 2367-2375
[14] Zhang M, Bai L, Shang W, Xie W, Ma H, Fu Y, Fang D, Sun H, Fan L, Han M, Liu C, Yang S. Journal of Materials Chemistry, 2012, 22(15): 7461-7467
[15] Li J L, Kudin K N, Mcallister M J, Prud'Homme R K, Aksay I A, Car R. Phys. Rev. Lett., 2006, 96(17): art. no. 176101
[16] Li Y, Hu Y, Zhao Y, Shi G, Deng L, Hou Y, Qu L. Adv. Mater., 2011, 23(6): 776-780
[17] Li Y, Zhao Y, Cheng H, Hu Y, Shi G, Dai L, Qu L. J. Am. Chem. Soc., 2012, 134(1): 15-18
[18] Qu L, Liu Y, Baek J, Dai L. ACS Nano, 2010, 4(3): 1321-1326
[19] Peng J, Gao W, Gupta B K, Liu Z, Romero-Aburto R, Ge L, Song L, Alemany L B, Zhan X, Gao G, Vithayathil S A, Kaipparettu B A, Marti A A, Hayashi T, Zhu J, Ajayan P M. Nano Letters, 2012, 12(2): 844-849
[20] Wang J, Xin X, Lin Z. Nanoscale, 2011, 3(8): 3040-3048
[21] Mueller M L, Yan X, Dragnea B, Li L S. Nano Lett., 2011, 11(1): 56-60
[22] Liu R, Wu D, Feng X, Mullen K. J. Am. Chem. Soc., 2011, 133(39): 15221-15223
[23] Hamilton I P, Li B, Yan X, Li L S. Nano Lett., 2011, 11(4): 1524-1529
[24] Mueller M L, Yan X, Mcguire J A, Li L S. Nano Lett., 2010, 10(7): 2679-2682
[25] Li L, Yan X. The Journal of Physical Chemistry Letters, 2010, 1(17): 2572-2576
[26] Yan X, Cui X, Li L S. J. Am. Chem. Soc., 2010, 132(17): 5944-5945
[27] Yan X, Cui X, Li B, Li L S. Nano Lett., 2010, 10(5): 1869-1873
[28] Wu J, Pisula W, Mullen K. Chem. Rev., 2007, 107(3): 718-747
[29] Wu J, Tomovic Z, Enkelmann V, Mullen K. J. Org. Chem., 2004, 69(16): 5179-5186
[30] Simpson C D, Brand J D, Berresheim A J, Przybilla L, Rader H J, Mullen K. Chemistry-A European Journal, 2002, 8(6): 1424-1429
[31] Dresselhaus M S, Dresselhaus G. Advances in Physics, 2002, 51(1): 1-186
[32] Zhu H, Wang X, Li Y, Wang Z, Yang F, Yang X. Chem. Commun. (Camb), 2009, (34): 5118-5120
[33] Wang X, Qu K, Xu B, Ren J, Qu X. Journal of Materials Chemistry, 2011, 21(8): 2445-2450
[34] Li H, He X, Liu Y, Huang H, Lian S, Lee S, Kang Z. Carbon, 2011, 49(2): 605-609
[35] Tang L, Ji R, Cao X, Lin J, Jiang H, Li X, Teng K S, Luk C M, Zeng S, Hao J, Lau S P. ACS Nano, 2012, 6(6): 5102-5110
[36] Zhuo S, Shao M, Lee S. ACS Nano, 2012, 6(2): 1059-1064
[37] Sun X, Li Y. Angewandte Chemie International Edition, 2004, 43(5): 597-601
[38] Ponomarenko L A, Schedin F, Katsnelson M I, Yang R, Hill E W, Novoselov K S, Geim A K. Science, 2008, 320(5874): 356-358
[39] Lu J, Yeo P S, Gan C K, Wu P, Loh K P. Nat. Nanotechnol., 2011, 6(4): 247-252
[40] Zhu S, Zhang J, Qiao C, Tang S, Li Y, Yuan W, Li B, Tian L, Liu F, Hu R, Gao H, Wei H, Zhang H, Sun H, Yang B. Chem. Commun. (Camb), 2011, 47(24): 6858-6860
[41] Jing Y, Zhu Y, Yang X, Shen J, Li C. Langmuir, 2011, 27(3): 1175-1180
[42] Gupta V, Chaudhary N, Srivastava R, Sharma G D, Bhardwaj R, Chand S. J. Am. Chem. Soc., 2011, 133(26): 9960-9963
[43] Cheng H, Zhao Y, Fan Y, Xie X, Qu L, Shi G. ACS Nano, 2012, 6(3): 2237-2244
[44] Zhao J, Chen G, Zhu L, Li G. Electrochemistry Communications, 2011, 13(1): 31-33
[45] Pan D, Zhang J, Li Z, Wu C, Yan X, Wu M. Chem. Commun. (Camb), 2010, 46(21): 3681-3683
[46] Zhu S, Zhang J, Liu X, Li B, Wang X, Tang S, Meng Q, Li Y, Shi C, Hu R, Yang B. RSC Advances, 2012, 2(7): 2717-2720
[47] Sun X, Liu Z, Welsher K, Robinson J T, Goodwin A, Zaric S, Dai H. Nano Res., 2008, 1(3): 203-212
[48] Li H, He X, Kang Z, Huang H, Liu Y, Liu J, Lian S, Tsang C H, Yang X, Lee S T. Angew Chem. Int. Ed. Engl., 2010, 49(26): 4430-4434
[49] Geng X, Niu L, Xing Z, Song R, Liu G, Sun M, Cheng G, Zhong H, Liu Z, Zhang Z, Sun L, Xu H, Lu L, Liu L. Adv. Mater., 2010, 22(5): 638-642

[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 张永, 张辉, 张逸, 高蕾, 卢建臣, 蔡金明. 表面合成异质原子掺杂的石墨烯纳米带[J]. 化学进展, 2023, 35(1): 105-118.
[3] 蔡雪儿, 简美玲, 周少红, 王泽峰, 王柯敏, 刘剑波. 人造细胞的化学构建及其生物医学应用研究[J]. 化学进展, 2022, 34(11): 2462-2475.
[4] 杨英, 马书鹏, 罗媛, 林飞宇, 朱刘, 郭学益. 多维CsPbX3无机钙钛矿材料的制备及其在太阳能电池中的应用[J]. 化学进展, 2021, 33(5): 779-801.
[5] 陈怡峰, 王聪, 任科峰, 计剑. 生物医用高通量研究中的微液滴阵列[J]. 化学进展, 2021, 33(4): 543-554.
[6] 杨英, 罗媛, 马书鹏, 朱从潭, 朱刘, 郭学益. 钙钛矿太阳能电池电子传输层的制备及应用[J]. 化学进展, 2021, 33(2): 281-302.
[7] 彭会荣, 蔡墨朗, 马爽, 时小强, 刘雪朋, 戴松元. 全无机钙钛矿太阳电池的制备及稳定性[J]. 化学进展, 2021, 33(1): 136-150.
[8] 穆蒙, 宁学文, 罗新杰, 冯玉军. 刺激响应性聚合物微球的制备、性能及应用[J]. 化学进展, 2020, 32(7): 882-894.
[9] 汪润田, 柳春丽, 陈振斌. 印迹复合膜[J]. 化学进展, 2020, 32(7): 989-1002.
[10] 吕维扬, 孙继安, 姚玉元, 杜淼, 郑强. 层状双金属氢氧化物的控制合成及其在水处理中的应用[J]. 化学进展, 2020, 32(12): 2049-2063.
[11] 李巍, 杨子煜, 侯仰龙, 高松. 二维磁性纳米材料的可控合成及磁性调控[J]. 化学进展, 2020, 32(10): 1437-1451.
[12] 贾强, 宋洪伟, 唐盛, 王静, 彭银仙. 功能化多孔材料的制备及其在特异性识别分离中的应用[J]. 化学进展, 2019, 31(8): 1148-1158.
[13] 龚乐, 杨蓉, 刘瑞, 陈利萍, 燕映霖, 冯祖飞. 石墨烯量子点在储能器件中的应用[J]. 化学进展, 2019, 31(7): 1020-1030.
[14] 王俊莲, 刘新宇, 谢美英, 王化军. 体离子印迹材料的制备方法[J]. 化学进展, 2018, 30(7): 989-1012.
[15] 张成江, 袁晓艳, 袁泽利, 钟永科, 张卓旻, 李攻科. 基于席夫碱反应的共价有机骨架材料[J]. 化学进展, 2018, 30(4): 365-382.
阅读次数
全文


摘要

石墨烯量子点的制备