English
新闻公告
More
化学进展 前一篇   后一篇

• 综述与评论 •

石墨烯纳米带

郑小青, 冯苗, 詹红兵*   

  1. 福州大学材料科学与工程学院 福州 350108
  • 收稿日期:2012-05-01 修回日期:2012-07-01 出版日期:2012-12-24 发布日期:2012-12-11
  • 通讯作者: 詹红兵 E-mail:hbzhan@fzu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.51172045)、高等学校博士学科点专项科研基金(新教师类)项目( No.20113514120006)和福建省自然科学基金项目(No.2012J05113)资助

Graphene Nanoribbons

Zheng Xiaoqing, Feng Miao, Zhan Hongbing*   

  1. College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
  • Received:2012-05-01 Revised:2012-07-01 Online:2012-12-24 Published:2012-12-11
近年来,一种新型的准一维石墨烯基材料即石墨烯纳米带(graphene nanoribbons, GNRs)受到广泛关注,限域的宽度和丰富的边缘构型使其具有许多不同于二维结构大面积石墨烯的性质和应用。本文介绍了GNRs特殊的边缘效应以及由此产生的电学、磁学等特殊性质,在此基础上进一步介绍了GNRs典型的制备方法、缺陷种类、掺杂和化学改性等,并对功能化的GNRs的应用进行了展望。
In recent years, an interesting class of quasi one dimensional graphene-based material, known as graphene nanoribbons (GNRs), has attracted tremendous attention. Owing to the finite width and abundant edge geometries, GNRs present a lot of promising properties and applications, which are quite different from large-area graphene. In this paper we attempt to give an overview of their novel edge effect and the resulting electronic property, magnetic property, etc. We further present some typical preparation methods, defects types, doping, chemical modification and so on. We also provide an outlook of the applications of functional GNRs. Contents
1 Introduction
2 Edge effect of graphene nanoribbons
3 Properties of graphene nanoribbons
3.1 Electronic properties
3.2 Magnetic properties
3.3 Chemical reactivity
3.4 Other properties
4 Preparation of graphene nanoribbons
4.1 Etching method
4.2 Chemosynthesis
4.3 Graphene nanoribbons from carbon nanotubes
4.4 Other methods
5 Perspectives

中图分类号: 

()
[1] Geim A K. Science, 2009, 324(5934): 1530-1534
[2] Gerstner E. Nat. Phys., 2010, 6(11): 836-836
[3] 徐秀娟(Xu X J), 秦金贵(Qin J G), 李振(Li Z). 化学进展(Progress in Chemistry), 2009, 21(12): 2559-2567
[4] Balog R, Jorgensen B, Nilsson L, Andersen M, Rienks E, Bianchi M, Fanetti M, Laegsgaard E, Baraldi A, Lizzit S, Sljivancanin Z, Besenbacher F, Hammer B, Pedersen T G, Hofmann P, Hornekaer L. Nat. Mater., 2010, 9(4): 315-319
[5] Wei D, Liu Y, Wang Y, Zhang H, Huang L, Yu G. Nano Lett., 2009, 9(5): 1752-1758
[6] Zhuang X D, Chen Y, Liu G, Li P P, Zhu C X, Kang E T, Neoh K G, Zhang B, Zhu J H, Li Y X. Adv. Mater., 2010, 22(15): 1731-1735
[7] Feng M, Zhan H, Chen Y. Appl. Phys. Lett., 2010, 96(3): art. no. 033103
[8] Feng M, Sun R, Zhan H, Chen Y. Nanotechnology, 2010, 21(7): 075601
[9] Wang X, Ouyang Y, Jiao L, Wang H, Xie L, Wu J, Guo J, Dai H. Nat. Nanotechnol., 2011, 6(9): 563-567
[10] Dutta S, Pati S K. J. Mater. Chem., 2010, 20(38): 8207-8223
[11] Li X, Wang X, Zhang L, Lee S, Dai H. Science, 2008, 319(5867): 1229-1232
[12] Schwierz F. Nat. Nanotechnol., 2010, 5(7): 487-496
[13] Haskins J, Knac A, Sevik C, Sevinli H, Cuniberti G, Cagn T. ACS Nano, 2011, 5(5): 3779-3787
[14] Basu D, Gilbert M J, Register L F, Banerjee S K, Macdonald A H. Appl. Phys. Lett., 2008, 92(4): art. no. 042114
[15] Wakabayashi K, Takane Y, Yamamoto M, Sigrist M. Carbon, 2009, 47(1): 124-137
[16] Querlioz D, Apertet Y, Valentin A, Huet K, Bournel A, Galdin-Retailleau S, Dollfus P. Appl. Phys. Lett., 2008, 92(4): art. no. 042108
[17] Jia X, Hofmann M, Meunier V, Sumpter B G, Campos-Delgado J, Romo-Herrera J M, Son H, Hsieh Y, Reina A, Kong J, Terrones M, Dresselhaus M S. Science, 2009, 323(5922): 1701-1705
[18] Jaiswal M, Lim C H Y X, Bao Q, Toh C T, Loh K P, Ozyilmaz B. ACS Nano, 2011, 5(2): 888-896
[19] Gunlycke D, Li J, Mintmire J W, White C T. Nano Lett., 2010, 10: 3638-3642
[20] Shemella P, Zhang Y, Mailman M, Ajayan P M, Nayak S K. Appl. Phys. Lett., 2007, 91(4): art. no. 042101
[21] Wassmann T, Seitsonen A P, Saitta A M, Lazzeri M, Mauri F. J. Am. Chem. Soc., 2010, 132: 3440-3451
[22] Kinder J M, Dorando J J, Wang H, Chan G K. Nano Lett., 2009, 9(5): 1980-1983
[23] Wang J Y, Liu Z F, Liu Z R. AIP Advances, 2012, 2: art. no. 0121031
[24] Huang B, Yan Q, Li Z, Duan W. Front. Phys. China, 2009, 4(3): 269-279
[25] Barone V, Hod O, Scuseria G E. Nano Lett., 2006, 6(12): 2748-2754
[26] Wang G. Chem. Phys. Lett., 2012, 533: 74-77
[27] Shimizu T, Haruyama J, Marcano D C, Kosinkin D V, Tour J M, Hirose K, Suenaga K. Nat. Nanotechnol., 2011, 6(1): 45-50
[28] Yu S S, Zheng W T, Wen Q B, Jiang Q. Carbon, 2008, 46: 537-543
[29] Kan E, Li Z, Yang J, Hou J G. J. Am. Chem. Soc., 2008, 130(13): 4224-4225
[30] Biel B, Triozon F, Blase X, Roche S. Nano Lett., 2009, 9(7): 2725-2729
[31] Huang B, Yan Q, Zhou G, Wu J, Liu F, Gu B, Duan W. Appl. Phys. Lett., 2007, 91(25): art. no. 253122
[32] Wu M, Wu X, Zeng X C. J. Phys. Chem. C, 2010, 114: 3937-3944
[33] Son Y, Cohen M L, Louie S G. Nature, 2006, 444(7117): 347-349
[34] Rao S S, Narayana J S, Stesmans A, Moshchalkov V V, Van T J, Kosynkin D V, Higginbotham A, Tour J M. Nano Lett., 2012, 12(3): 1210-1217
[35] Bai J, Cheng R, Xiu F, Liao L, Wang M, Shailos A, Wang K L, Huang Y, Duan X. Nat. Nanotechnol., 2010, 5(9): 655-659
[36] Kim W Y, Kim K S. Nat. Nanotechnol., 2008, 3(7): 408-412
[37] Barone V, Hod O, Scuseria G E. Nano lett., 2006, 6(12): 2748-2754
[38] Sharma R, Nair N, Strano M S. J. Phys. Chem. C, 2009, 113(33): 14771-14777
[39] Zheng Y, Xu L, Fan Z, Wei N, Huang Z. J. Mater. Chem., 2012, 22(19): 9798-9805
[40] Yang L, Cohen M L, Louie S G. Nano Lett., 2007, 7(10): 3112-3115
[41] Tapaszto L, Dobrik G, Lambin P, Biro L P. Nat. Nanotechnol., 2008, 3(7): 397-401
[42] Sprinkle M, Ruan M, Hu Y, Hankinson J, Rubio-Roy M, Zhang B, Wu X, Berger C, de Heer W A. Nat. Nanotechnol., 2010, 5(10): 727-731
[43] Masubuchi S, Ono M, Yoshida K, Hirakawa K, Machida T. Appl. Phys. Lett., 2009, 94(8): art. no. 082107
[44] Bai J, Huang Y. Mater. Sci. Eng. R, 2010, 70(3/6): 341-353
[45] Bai J, Duan X, Huang Y. Nano Lett., 2009, 9(5): 2083-2087
[46] Liu L, Zhang Y, Wang W, Gu C, Bai X, Wang E. Adv. Mater., 2011, 23: 1246-1251
[47] Shin Y, Son J Y, Jo M, Shin Y, Jang H M. J. Am. Chem. Soc., 2011, 133: 5623-5625
[48] Jia X, Campos-Delgado J, Terrones M, Meunier V, Dresselhaus M S. Nanoscale, 2011, 3(1): 86-95
[49] Campos-Delgado J, Romo-Herrera J M, Jia X, Cullen D A, Muramatsu H, Kim Y A, Hayashi T, Ren Z, Smith D J, Okuno Y, Ohba T, Kanoh H, Kaneko K, Endo M, Terrones H, Dresselhaus M S, Terrones M. Nano Lett., 2008, 8(9): 2773-2778
[50] Pan Z, Liu N, Fu L, Liu Z. J. Am. Chem. Soc., 2011, 133(44): 17578-17581
[51] Wei D, Liu Y, Zhang H, Huang L, Wu B, Chen J, Yu G. J. Am. Chem. Soc., 2009, 131(31): 11147-11154
[52] Pan M, Giro E C, Jia X, Bhaviripudi S, Li Q, Kong J, Meunier V, Dresselhaus M S. Nano Lett., 2012, 12(4): 1928-1933
[53] Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen A P, Saleh M, Feng X, Mullen K, Fasel R. Nature, 2010, 466(7305): 470-473
[54] Bjork J, Stafstrom S, Hanke F. J. Am. Chem. Soc., 2011, 133: 14884-14887
[55] Li X, Wang X, Zhang L, Lee S, Dai H. Science, 2008, 319(5867): 1229-1232
[56] Wu Z, Ren W, Gao L, Liu B, Zhao J, Cheng H. Nano Research, 2010, 3(1): 16-22
[57] Jiao L, Wang X, Diankov G, Wang H, Dai H. Nat. Nano, 2010, 5(5): 321-325
[58] Ci L, Xu Z, Wang L, Gao W, Ding F, Kelly K, Yakobson B, Ajayan P. Nano Research, 2008, 1: 116-122
[59] Campos L C, Manfrinato V R, Sanchez-Yamagishi J D, Kong J, Jarillo-Herrero P. Nano Lett., 2009, 9(7): 2600-2604
[60] Datta S S, Strachan D R, Khamis S M, Johnson A T C. Nano Lett., 2008, 8(7): 1912-1915
[61] Parashar U K, Bhandari S, Srivastava R K, Jariwala D, Srivastava A. Nanoscale, 2011, 3(9): 3876-3882
[62] Hirsch A. Angew. Chem. Int. Ed., 2009, 48(36): 6594-6596
[63] Vaughan O. Nat. Nanotechnol., 2009, 4(5): 283-283
[64] Terrones M, Botello-Méndez A R, Campos-Delgado J, López-Urías F, Vega-Cantú Y I, Rodríguez-Macías F J, Elías A L, Muñoz-Sandoval E, Cano-Márquez A G, Charlier J, Terrones H. Nano Today, 2010, 5(4): 351-372
[65] Matthias B. Surf. Sci. R., 2012, 67: 83-115
[66] Kosynkin D V, Lu W, Sinitskii A, Pera G, Sun Z, Tour J M. ACS Nano, 2011, 5(2): 968-974
[67] Kosynkin D V, Higginbotham A L, Sinitskii A, Lomeda J R, Dimiev A, Price B K, Tour J M. Nature, 2009, 458(7240): 872-876
[68] Cataldo F, Compagnini G, Patané G, Ursini O, Angelini G, Ribic P R, Margaritondo G, Cricenti A, Palleschi G, Valentini F. Carbon, 2010, 48(9): 2596-2602
[69] Higginbotham A L, Kosynkin D V, Sinitskii A, Sun Z, Tour J M. ACS Nano, 2010, 4(4): 2059-2069
[70] Shinde D B, Debgupta J, Kushwaha A, Aslam M, Pillai V K. J. Am. Chem. Soc., 2011, 1333: 4168-4171
[71] Jiao L Y, Zhang L, Wang X R, Diankov G, Dai H J. Nature, 2009, 458(7240): 877-880
[72] Fan Y, Li J, Liu X, Wang L, Chen X, Sun S, Kawasaki A, Jiang W. Carbon, 2011, 49(4): 1439-1445
[73] Morelos Gómez A, Vega-Díaz S M, González V J, Tristán-López F, Cruz-Silva R, Fujisawa K, Muramatsu H, Hayashi T, Mi X, Shi Y, Sakamoto H, Khoerunnisa F, Kaneko K, Sumpter B G, Kim Y A, Meunier V, Endo M, Muñoz-Sandoval E, Terrones M. ACS Nano, 2012, 6(3): 2261-2272
[74] Kim K, Sussman A, Zettl A. ACS Nano, 2010, 4(3): 1362-1366
[75] Ma L, Wang J, Ding F. Angew. Chem., 2012, 124(5): 1187-1190
[76] Huang X, Yin Z, Wu S, Qi X, He Q, Zhang Q, Yan Q, Boey F, Zhang H. Small, 2011, 7(14): 1876-1902
[77] Stützel E U, Burghard M, Kern K, Traversi F, Nichele F, Sordan R. Small, 2010, 6(24): 2822-2825
[78] Johnson J L, Behnam A, Pearton S J, Ural A. Adv. Mater., 2010, 22(43): 4877-4880
[79] Chitara B, Panchakarla L S, Krupanidhi S B, Rao C N R. Adv. Mater., 2011, 23(45): 5419-5424
[80] Velten J A, Carretero-Gonzalez J, Castillo-Martinez E, Bykova J, Cook A, Baughman R, Zakhidov A. J. Phys. Chem. C, 2011, 115(50): 25125-25131
[81] Yu S, Zheng W. Nanoscale, 2010, 2(7): 1069-1082
[82] Chien S, Yang Y, Chen C O. Carbon, 2012, 50(2): 421-428
[83] Xiang H, Kan E, Wei S, Whangbo M, Yang J. Nano Lett., 2009, 9(12): 4025-4030
[1] 鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
[2] 鲍艳, 许佳琛, 郭茹月, 马建中. 基于微纳结构的高灵敏度柔性压力传感器[J]. 化学进展, 2023, 35(5): 709-720.
[3] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[4] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[5] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[6] 牛文辉, 张达, 赵振刚, 杨斌, 梁风. 钠基-海水电池的发展:“关键部件及挑战”[J]. 化学进展, 2023, 35(3): 407-420.
[7] 杨国栋, 苑高千, 张竞哲, 吴金波, 李发亮, 张海军. 多孔电磁波吸收材料[J]. 化学进展, 2023, 35(3): 445-457.
[8] 蒋昊洋, 熊丰, 覃木林, 高嵩, 何刘如懿, 邹如强. 用于电热转化、存储与利用的导电相变材料[J]. 化学进展, 2023, 35(3): 360-374.
[9] 刘晓珺, 秦朗, 俞燕蕾. 胆甾相液晶螺旋方向的光调控[J]. 化学进展, 2023, 35(2): 247-262.
[10] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[11] 张旭, 张蕾, 黄善恩, 柴之芳, 石伟群. 盐包合材料在高温熔盐体系中的合成及其潜在应用[J]. 化学进展, 2022, 34(9): 1947-1956.
[12] 顾顺心, 姜琴, 施鹏飞. 发光铱(Ⅲ)配合物抗肿瘤活性研究及应用[J]. 化学进展, 2022, 34(9): 1957-1971.
[13] 姬超, 李拓, 邹晓峰, 张璐, 梁春军. 二维钙钛矿光伏器件[J]. 化学进展, 2022, 34(9): 2063-2080.
[14] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[15] 陈琳, 陈捷锋, 刘一任, 刘玉玉, 凌海峰, 解令海. 有机张力半导体及其光电特性[J]. 化学进展, 2022, 34(8): 1772-1783.
阅读次数
全文


摘要

石墨烯纳米带