English
新闻公告
More
化学进展 2012, Vol. Issue (9): 1665-1673 前一篇   后一篇

• 综述与评论 •

石墨烯纳米复合材料在电化学生物传感器中的应用

宋英攀, 冯苗, 詹红兵*   

  1. 福州大学材料科学与工程学院 福州 350108
  • 收稿日期:2011-12-01 修回日期:2012-03-01 出版日期:2012-09-24 发布日期:2012-09-27
  • 通讯作者: 詹红兵 E-mail:hbzhan@fzu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.51172045)和高校博士点基金项目(No.20113514120006)资助

Applications of Graphene Nanocomposites in Electrochemical Biosensors

Song Yingpan, Feng Miao, Zhan Hongbing   

  1. College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
  • Received:2011-12-01 Revised:2012-03-01 Online:2012-09-24 Published:2012-09-27
将石墨烯与其他纳米材料复合,是一种拓展或增强其应用的有效方法。借助不同组分间的协同作用,可以改善石墨烯的电学、化学和电化学性质,拓展和增强石墨烯的电化学效应,为固定氧化还原酶,实现直接电化学提供新型、高效的平台,应用于第三代电化学生物传感器的设计和制备,对葡萄糖、胆固醇、血红蛋白、DNA、H2O2、O2、小生物分子等的检测显示出了优异的灵敏度和选择性。本文综述了基于石墨烯构筑的纳米复合材料在电化学生物传感器中的应用研究,包括石墨烯与贵金属、金属氧化物/半导体纳米粒子、高分子、染料分子、离子液体、生物分子等的纳米复合材料,并对石墨烯材料在电化学领域的发展方向和应用前景进行了展望。
Construction of graphene-based nanocomposite system is an effective approach for the expansion and enhancement of applications of graphene. Owing to the synergy effect of different constituents, the electrical, chemical and electrochemical properties of graphene can be greatly improved, leading to the expansion and enhancement of the electrochemical effects of graphene. Graphene nanocomposites provide a novel and efficient electrochemical platform for the immobilization of oxidoreductase and the realization of direct electrochemistry, which can apply in the design and preparation of third-generation electrochemical biosensors, showing excellent sensitivity and selectivity towards the detection of glucose, cholesterol, Hb, DNA, H2O2, O2 and small biomolecules. This paper reviews the progress of graphene nanocomposites applying in electrochemical biosensors, including the nanocomposites of graphene with precious metal, metal oxide/semiconductor nanoparticle, polymer, dye molecule, ionic liquid and biomolecule. The future development and application prospect of graphene in electrochemical fields are also discussed. Contents 1 Introduction
2 Graphene-inorganic nanocomposite modified electr-odes
2.1 Graphene-precious metal nanoparticle modified electrodes
2.2 Graphene-metal oxide/semiconductor nanop-article modified electrodes
3 Graphene-organic nanocomposite modified electr-odes
3.1 Graphene-polymer modified electrodes
3.2 Graphene-dye molecule modified electrodes
4 Graphene-other nanocomposite modified electrodes
4.1 Graphene-ionic liquid modified electrodes
4.2 Graphene-biomolecule modified electrodes
5 Conclusion and outlook

中图分类号: 

()
[1] Wang Y, Li Y M, Tang L H, Lu J, Li J H. Electrochem. Commun., 2009, 11 (4): 889-892
[2] Tang L H, Feng H B, Cheng J S, Li J H. Chem. Commun., 2010, 46 (32): 5882-5884
[3] Yang W R, Ratinac K R, Ringer S P, Thordarson P, Gooding J J, Braet F. Angew. Chem. Int. Ed., 2010, 49 (12): 2114-2138
[4] Chen D, Tang L H, Li J H. Chem. Soc. Rev., 2010, 39 (8): 3157-3180
[5] Pumera M, Ambrosi A, Bonanni A, Chng E L K, Poh H L. Trends Anal. Chem., 2010, 29 (9): 954-965
[6] Shao Y Y, Wang J, Wu H, Liu J, Aksay I A, Lin Y H. Electroanalysis, 2010, 22 (10): 1027-1036
[7] Ratinac K R, Yang W R, Gooding J J, Thordarson P, Braet F. Electroanalysis, 2011, 23 (4): 803-826
[8] Kuila T, Bose S, Khanra P, Mishra A K, Kim N H, Lee J H. Biosens. Bioelectron., 2011, 26 (12): 4637-4648
[9] Guo S J, Dong S J. Chem. Soc. Rev., 2011, 40 (5): 2644-2672
[10] Jiang H J. Small, 2011, 7 (17): 2413-2427
[11] Gan T, Hu S S. Microchim. Acta, 2011, 175 (1/2): 1-19
[12] Pumera M. Mater. Today, 2011, 14 (7/8): 308-315
[13] 黄海平(Huang H P), 朱俊杰(Zhu J J). 分析化学(Chinese Journal of Analytical Chemistry), 2011, 39 (7): 963-971
[14] Wang Y, Li Z H, Wang J, Li J H, Lin Y H. Trends Biotechnol., 2011, 29 (5): 205-212
[15] Wu P, Shao Q, Hu Y J, Jin J, Yin Y J, Zhang H, Cai C X. Electrochim. Acta, 2010, 55 (28): 8606-8614
[16] Wu J F, Xu M Q, Zhao G C. Electrochem. Commun., 2010, 12 (1): 175-177
[17] Ambrosi A, Pumera M. Phys. Chem. Chem. Phys., 2010, 12 (31): 8943-8947
[18] Goh M S, Pumera M. Anal.Bioanal.Chem., 2011, 399 (1): 127-131
[19] Zhao J, Chen G F, Zhu L, Li G X. Electrochem. Commun., 2011, 13 (1): 31-33
[20] Ehret R, Baumann W, Brischwein M, Schwinde A, Stegbauer K, Wolf B. Biosens. Bioelectron., 1997, 12 (1): 29-41
[21] Pingarrón J M, Yáñez-Sedeño P, González-Cortés A. Electrochim. Acta, 2008, 53 (19): 5848-5866
[22] Guo S J, Dong S J. Trends Anal. Chem., 2009, 28 (1): 96-109
[23] Wang F, Hu S S. Microchim. Acta, 2009, 165 (1/2): 1-22
[24] Siangproh W, Dungchai W, Rattanarat P, Chailapakul O. Anal. Chim. Acta, 2011, 690 (1): 10-25
[25] Dinckaya E, Kinik O, Sezginturk M K, Altug C, Akkoca A. Biosens. Bioelectron., 2011, 26 (9): 3806-3811
[26] Cao Z X, Zou Y J, Xiang C L, Sun L X, Xu F. Anal. Lett., 2007, 40 (11): 2116-2127
[27] Gutes A, Carraro C, Maboudian R. Electrochim. Acta, 2011, 56 (17): 5855-5859
[28] Bai L J, Yuan R, Chai Y Q, Yuan Y L, Mao L, Wang Y. Anal. Chim. Acta, 2011, 698 (1/2): 14-19
[29] Wang Y, Zhang S, Du D, Shao Y Y, Li Z H, Wang J, Engelhard M H, Li J H, Lin Y H. J. Mater. Chem., 2011, 21 (14): 5319-5325
[30] Li Y M, Tang L H, Li J H. Electrochem. Commun., 2009, 11 (4): 846-849
[31] Lin L, Liu Y, Tang L H, Li J H. Analyst, 2011, 136 (22): 4732-4737
[32] Shan C S, Yang H F, Han D X, Zhang Q X, Ivaska A, Niu L. Biosens. Bioelectron., 2010, 25 (5): 1070-1074
[33] Zhou K F, Zhu Y H, Yang X L, Li C Z. Electroanalysis, 2010, 22 (3): 259-264
[34] Baby T T, Aravind S S J, Arockiadoss T, Rakhi R B, Ramaprabhu S. Sens. Actuators B, 2010, 145 (1): 71-77
[35] Dey R S, Raj C R. J. Phys. Chem. C, 2010, 114 (49): 21427-21433
[36] Lu L M, Li H B, Qu F L, Zhang X B, Shen G L, Yu R Q. Biosens. Bioelectron., 2011, 26 (8): 3500-3504
[37] Zeng Q, Cheng J S, Liu X F, Bai H T, Jiang J H. Biosens. Bioelectron., 2011, 26 (8): 3456-3463
[38] Wen D, Guo S J, Wang Y Z, Dong S J. Langmuir, 2010, 26 (13): 11401-11406
[39] Luo X L, Morrin A, Killard A J, Smyth M R. Electroanalysis, 2006, 18 (4): 319-326
[40] Bally M, Vörös J. Nanomedicine, 2009, 4 (4): 447-467
[41] Wang K, Liu Q, Guan Q M, Wu J, Li H N, Yan J J. Biosens. Bioelectron., 2011, 26 (5): 2252-2257
[42] Lu X B, Zhang H J, Ni Y W, Zhang Q, Chen J P. Biosens. Bioelectron., 2008, 24 (1): 93-98
[43] Xu J, Liu C H, Wu Z F. Microchim. Acta, 2011, 172 (3/4): 425-430
[44] Zhang Y, He P L, Hu N F. Electrochim. Acta, 2004, 49 (12): 1981-1988
[45] Fan Y, Lu H T, Liu J H, Yang C P, Jing Q S, Zhang Y X, Yang X K, Huang K J. Colloids Surf. B, 2011, 83 (1): 78-82
[46] Fan Y, Liu J H, Lu H T, Zhang Q. Colloids Surf. B, 2011, 85 (2): 289-292
[47] Zhou K F, Zhu Y H, Yang X L, Li C Z. Electroanalysis, 2011, 23 (4): 862-869
[48] Li L M, Du Z F, Liu S A, Hao Q Y, Wang Y G, Li Q H, Wang T H. Talanta, 2010, 82 (5): 1637-1641
[49] Xu H F, Dai H, Chen G N. Talanta, 2010, 81 (1/2): 334-338
[50] Liu H Y, Deng J Q. Electrochim. Acta, 1995, 40 (12): 1845-1849
[51] Chen X P, Ye H Z, Wang W Z, Qiu B, Lin Z Y, Chen G N. Electroanalysis, 2010, 22 (20): 2347-2352
[52] Holcombe T W, Woo C H, Kavulak D F J, Thompson B C, Fréchet J M J. J. Am. Chem. Soc., 2009, 131 (40): 14160-14161
[53] Yoon H, Jang J. Adv. Funct. Mater., 2009, 19 (10): 1567-1576
[54] Zhang J, Lei J P, Pan R, Xue Y D, Ju H X. Biosens. Bioelectron., 2010, 26 (2): 371-376
[55] Bo Y, Yang H Y, Hu Y, Yao T M, Huang S S. Electrochim. Acta, 2011, 56 (6): 2676-2681
[56] Zagal J H, Griveau S, Ozoemena K I, Nyokong T, Bedioui F. J. Nanosci. Nanotechnol., 2009, 9 (4): 2201-2214
[57] Zhang S Y, Tang S, Lei J P, Dong H F, Ju H X. J. Electroanal. Chem., 2011, 656 (1/2): 285-288
[58] Tu W W, Lei J P, Zhang S Y, Ju H X. Chem. Eur. J., 2010, 16 (35): 10771-10777
[59] Jiang Y Y, Zhang X D, Shan C S, Hua S C, Zhang Q X, Bai X X, Dan L, Niu L. Talanta, 2011, 85 (1): 76-81
[60] Zhang Y, Sun X M, Zhu L Z, Shen H B, Jia N Q. Electrochim. Acta, 2011, 56 (3): 1239-1245
[61] 上官小东(Shangguan X D), 汤宏胜(Tang H S), 刘锐晓(Liu R X), 郑建斌(Zheng J B). 分析化学(Chinese Journal of Analytical Chemistry), 2010, 38 (10): 1510-1516
[62] Sun P, Armstrong D W. Anal. Chim. Acta, 2010, 661 (1): 1-16
[63] Shiddiky M J A, Torriero A A J. Biosens. Bioelectron., 2011, 26 (5): 1775-1787
[64] Silvester D S. Analyst, 2011, 136 (23): 4871-4882
[65] Zhang Q, Wu S Y, Zhang L, Lu J, Verproot F, Liu Y, Xing Z Q, Li J H, Song X M. Biosens. Bioelectron., 2011, 26 (5): 2632-2637
[66] Guo S J, Wen D, Zhai Y M, Dong S J, Wang E K. Biosens. Bioelectron., 2011, 26 (8): 3475-3481
[67] Ng S R, Guo C X, Li C M. Electroanalysis, 2011, 23 (2): 442-448
[68] Shan C S, Yang H F, Song J F, Han D X, Ivaska A, Niu L. Anal. Chem., 2009, 81 (6): 2378-2382
[69] Shan C S, Yang H F, Han D X, Zhang Q X, Ivaska A, Niu L. Biosens. Bioelectron., 2010, 25 (6): 1504-1508
[70] Chen S M, Chen S V. Electrochim. Acta, 2003, 48 (5): 513-529
[71] Shie J W, Yogeswaran U, Chen S M. Talanta, 2008, 74 (5): 1659-1669
[72] Tang L H, Wang Y, Liu Y, Li J H. ACS Nano, 2011, 5 (5): 3817-3822
[73] Zhang Q, Qiao Y, Hao F, Zhang L, Wu S Y, Li Y, Li J H, Song X M. Chem. Eur. J., 2010, 16 (27): 8133-8139
[74] Li D,Song S P, Fan C H. Acc. Chem. Res., 2010, 43(5):631-641
[75] Wang Y, Li Z H, Hu D H, Lin C T, Li J H, Lin Y H. J. Am. Chem. Soc., 2010, 132 (27): 9274-9276
[76] Tang D P, Tang J, Li Q F, Su B L, Chen G N. Anal. Chem., 2011, 83(19):7255-7259
[1] 陈戈慧, 马楠, 于帅兵, 王娇, 孔金明, 张学记. 可卡因免疫及适配体生物传感器[J]. 化学进展, 2023, 35(5): 757-770.
[2] 牛文辉, 张达, 赵振刚, 杨斌, 梁风. 钠基-海水电池的发展:“关键部件及挑战”[J]. 化学进展, 2023, 35(3): 407-420.
[3] 刘峻, 叶代勇. 抗病毒涂层[J]. 化学进展, 2023, 35(3): 496-508.
[4] 钟衍裕, 王正运, 刘宏芳. 抗坏血酸电化学传感研究进展[J]. 化学进展, 2023, 35(2): 219-232.
[5] 李婧, 朱伟钢, 胡文平. 基于有机复合材料的近红外和短波红外光探测器[J]. 化学进展, 2023, 35(1): 119-134.
[6] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[7] 张永, 张辉, 张逸, 高蕾, 卢建臣, 蔡金明. 表面合成异质原子掺杂的石墨烯纳米带[J]. 化学进展, 2023, 35(1): 105-118.
[8] 唐森林, 高欢, 彭颖, 李明光, 陈润锋, 黄维. 钙钛矿光伏电池的非辐射复合损耗及调控策略[J]. 化学进展, 2022, 34(8): 1706-1722.
[9] 陆峰, 赵婷, 孙晓军, 范曲立, 黄维. 近红外二区发光稀土纳米材料的设计及生物成像应用[J]. 化学进展, 2022, 34(6): 1348-1358.
[10] 周晋, 陈鹏鹏. 二维纳米材料的改性及其环境污染物治理方面的应用[J]. 化学进展, 2022, 34(6): 1414-1430.
[11] 蒋峰景, 宋涵晨. 石墨基液流电池复合双极板[J]. 化学进展, 2022, 34(6): 1290-1297.
[12] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[13] 姜鸿基, 王美丽, 卢志炜, 叶尚辉, 董晓臣. 石墨烯基人工智能柔性传感器[J]. 化学进展, 2022, 34(5): 1166-1180.
[14] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[15] 于丰收, 湛佳宇, 张鲁华. p区金属基电催化还原二氧化碳制甲酸催化剂研究进展[J]. 化学进展, 2022, 34(4): 983-991.