English
新闻公告
More
化学进展 2012, Vol. Issue (9): 1632-1645 前一篇   后一篇

• 特约稿 •

多功能二噻吩乙烯光致变色光分子开关材料

邹祺, 张隽佶, 田禾*   

  1. 华东理工大学 结构可控先进功能材料及其制备教育部重点实验室 上海 200237
  • 收稿日期:2012-04-01 修回日期:2012-05-01 出版日期:2012-09-24 发布日期:2012-09-27
  • 通讯作者: 田禾 E-mail:tianhe@ecust.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 2119033)资助

Multi-Functional Molecular Switches Based on Photochromic Dithienylethenes

Zou Qi, Zhang Junji, Tian He   

  1. Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science & Technology, Shanghai 200237, China
  • Received:2012-04-01 Revised:2012-05-01 Online:2012-09-24 Published:2012-09-27
光致变色材料是一类在不同波长的光交替照射下,产生两种可进行可逆转换的光致异构体并伴随明显的光物理和光化学性能变化的材料。基于其特殊的光致异构性质,人们已开发出多种光致变色功能材料并将其广泛应用于超高密度光信息存储、分子开关、分子逻辑门、分子导线、光电材料、多光子器件、表面/纳米器件、液晶材料、化学传感、生物成像、自组装、聚集诱导发光、光控生物体系等诸多领域。其中,二噻吩乙烯类化合物因其出色的热稳定性、优良的耐疲劳性、快的响应速率、高的转化率和量子产率以及出色的固相反应活性而成为理想的光致变色材料之一。本文主要围绕近期本研究组研究成果着重介绍近几年二噻吩乙烯类化合物从溶液体系到功能化表面体系的研究进展,探讨当前该领域存在的问题并对其前景和发展方向进行展望。
Photochromic materials are those which can undergo reversible photo-switches between two different states or isomers upon alternative irradiation with different wavelengths of light accompanied by distinct photophysical and photochemical properties. Inspired by their special photo-switchable characteristics, a variety of light-driven functional materials have been exploited, such as ultrahigh-density optical data storage, molecular switches, logic gates, molecular wires, optic/electronic devices, multi-photon devices, surface/nanoparticle devices, liquid crystals, bio-imaging and so on. Apart from these, further creation of optoelectronic and photo-optical devices based on photochromic molecular switches which operate at both molecular and supramolecular levels have recently attracted many attentions. Thus photo-switchable compounds also have played an important role in sensing, self-assembly, aggregation-induced enhanced emission and photo-controlled biological systems. In particular, dithienylethene derivatives are one of the most promising families of photochromic compounds due to their excellent thermal-stability, remarkable fatigue-resistance, rapid response and fairly high photocyclization quantum yields as well as reactivity in the solid state. According to our recent research achievements, this article provides an overview of recent exciting progress mainly in the field of photochromic dithienylethene derivatives, from systems in solution to modified functional surfaces. Furthermore, based on current development of these photo-switchable systems, further development as well as existing challenges are also discussed and put in prospect. Contents 1 Introduction
2 Photochromic systems in solutions
2.1 Photochromic switches as multi-addressable materials and logic gates
2.2 Photochromic switches with ion recognition ability
2.3 Self-assembly based on photochromic units
2.4 Dithienylethenes with gated photochromic properties
2.5 Photochromic switches as multi-level molecular machines
2.6 Photochromic switches for potential biological applications
2.7 Dithienylethenes featuring new ethene bridges
3 Photochromic materials on the surfaces
4 Conclusion and outlook

中图分类号: 

()
[1] Tian H, Yang S J. Chem. Soc. Rev., 2004, 33: 85-97
[2] Irie M. Chem. Rev., 2000, 100: 1685-1716
[3] Raymo F M, Tomasulo M. Chem. Soc. Rev., 2005, 34: 327-336
[4] Credi A. Angew. Chem. Int. Ed., 2007, 46: 5472-5475
[5] Frigoli M, Mehl G H. Angew. Chem. Int. Ed., 2005, 44: 5048-5052
[6] Tian H. Angew. Chem. Int. Ed., 2010, 49: 4710-4712
[7] Carling C J, Boyer J C, Branda N R. J. Am. Chem. Soc., 2009, 131: 10838-10839
[8] Mori K, Ishibashi Y, Matsuda H, Ito S, Nagasawa Y, Nakagawa H, Uchida K, Yokojima S, Nakamura S, Irie M, Miyasaka H. J. Am. Chem. Soc., 2011, 133: 2621-2625
[9] Zhou Z, Hu H, Yang H, Yi T, Huang K, Yu M, Li F, Huang C. Chem. Commun., 2008, 4786-4788
[10] Feng Y L, Yan Y L, Wang S, Zhu W H, Qian S X, Tian H. J. Mater. Chem., 2006, 16: 3685-3692
[11] Takahashi I, Honda Y, Hirota S. Angew. Chem. Int. Ed., 2009, 48: 6065-6068
[12] Areephong J, Browne W R, Katsonis N, Feringa B L. Chem. Commun., 2006, 3930-3932
[13] Callari F L, Sortino S. J. Mater. Chem., 2007, 17: 4184-4188
[14] Wen G, Yan J, Zhou Y, Zhang D, Mao L, Zhu D. Chem. Commun., 2006, 3016-3018
[15] Zacharias P, Gather M C, Köhnen A, Rehmann N, Meerholz K. Angew. Chem. Int. Ed., 2009, 48: 4038-4041
[16] Whalley A C, Steigerwald M L, Guo X, Nuckolls C. J. Am. Chem. Soc., 2007, 129: 12590-12591
[17] Ferri V, Elbing M, Pace G, Dickey M D, Zharnikov M, Samori P, Mayor M, Rampi M A. Angew. Chem. Int. Ed., 2008, 47: 3407-3409
[18] Kim E, Lee H W. J. Mater. Chem., 2006, 16: 1384-1389
[19] Wang Y, Li Q. Adv. Mater., 2012, 24: 1926-1945
[20] Wang Y, Urbas A, Li Q. J. Am. Chem. Soc., 2012, 134: 3342-3345
[21] Li Y N, Urbas A, Li Q. J. Org. Chem., 2011, 76: 7148-7156
[22] Rameshbabu K, Urbas A, Li Q. J. Phys. Chem. B, 2011, 115: 3409-3415
[23] Hayasaka H, Miyashita T, Nakayama M, Kuwada K, Akagi K. J. Am. Chem. Soc., 2012, 134: 3758-3765
[24] Shao N, Jin J Y, Wang H, Zheng J, Yang R H, Chan W H, Abliz Z. J. Am. Chem. Soc., 2010, 132: 725-736
[25] Shiraishi Y, Sumiya S, Hirai T. Chem. Commun., 2011, 47: 4953-4955
[26] Muraoka T, Kinbara K, Aida T. J. Am. Chem. Soc., 2006, 128: 11600-11605
[27] Dube H, Ajami D, Rebek J Jr. Angew. Chem. Int. Ed., 2010, 49: 3192-3195
[28] Xiao S Z, Zou Y, Wu J C, Zhou Y F, Yi T, Li F Y, Huang C H. J. Mater. Chem., 2007, 17: 2483-2489
[29] Zhang Z Y, Xu B, Su J H, Shen L P, Xie Y S, Tian H. Angew. Chem. Int. Ed., 2011, 123: 11858-11861
[30] Lim S J, An B K, Jung S D, Chung M A, Park S Y. Angew. Chem. Int. Ed., 2004, 43: 6346-6350
[31] Lim S J, An B K, Park S Y. Macromolecules, 2005, 38: 6236-6239
[32] An B K, Gierschner J, Park S Y. Acc. Chem. Res., 2012, 45: 544-554
[33] Singer M, Jäschke A. J. Am. Chem. Soc., 2010, 132: 8372-8377
[34] McCullagh M, Franco I, Ratner M A, Schatz G C. J. Am. Chem. Soc., 2011, 133: 3452-3459
[35] Andersson J, Li S, Lincoln P, Andréasson J. J. Am. Chem. Soc., 2008, 130: 11836-11837
[36] Hayashi G, Hagihara M, Dohno C, Nakatani K. J. Am. Chem. Soc., 2007, 129: 8678-8679
[37] Tian H, Feng Y L. J. Mater. Chem., 2008, 18: 1617-1622
[38] Tian H, Wang S. Chem. Commun., 2007, 781-792
[39] Minkin V I. Chem. Rev., 2004, 104: 2751-2776
[40] Russew M M, Hecht S. Adv. Mater., 2010, 22: 3348-3360
[41] Gust D, Andreasson J, Pischel U, Moore T A, Moore A L. Chem. Commun., 2012, 48: 1947-1957
[42] Luo Q F, Cheng H, Tian H. Polym. Chem., 2011, 2: 2435-2443
[43] Harvey C P, Tovar J D. Polym. Chem., 2011, 2: 2699-2706
[44] de Silva A P, Uchiyama S. Nat. Nanotechnol., 2007, 2: 399-410
[45] Jiang G, Song Y, Guo X, Zhang D, Zhu D. Adv. Mater., 2008, 20: 2888-2898
[46] Pischel U. Angew. Chem. Int. Ed., 2007, 46: 4026-4040
[47] Lott J, Ryan C, Valle B, Johnson J R Ⅲ, Schiraldi D A, Shan J, Singer K D, Weder C. Adv. Mater., 2011, 23: 2425-2429
[48] Li H, Jin Z, Li N, Xu Q, Gu H, Lu J, Ma X, Wang L. J. Mater. Chem., 2011, 21: 5860-5862
[49] Guo Z Q, Zhu W H, Shen L J, Tian H. Angew. Chem. Int. Ed., 2007, 46: 5549-5553
[50] Zhang J J, Tan W J, Meng X L, Tian H. J. Mater. Chem., 2009, 19: 5726-5729
[51] Meng X L, Zhu W H, Zhang Q, Feng Y L, Tan W J, Tian H. J. Phys. Chem. B, 2008, 112: 15636-15645
[52] Chen S J, Yang Y H, Wu Y, Tian H, Zhu W H. J. Mater. Chem., 2012, 22: 5486-5494
[53] Zhang J Q, Jin J Y, Zhang J J, Zou L. Chin. J. Chem., 2012, DOI: 10.1002/cjoc.201200139
[54] Kärnbratt J, Hammarson M, Li S, Anderson H L, Albinsson B, Andréasson J. Angew. Chem. Int. Ed., 2010, 49: 1854-1857
[55] Yuan W, Sun L, Tang H, Wen Y, Jiang G, Huang W, Jiang L, Song Y, Tian H, Zhu D. Adv. Mater., 2005, 17: 156-160
[56] Lee P H M, Ko C C, Zhu N, Yam V W W. J. Am. Chem. Soc., 2007, 129: 6058-6059
[57] Ko C C, Yam V W W. J. Mater. Chem., 2010, 20: 2063-2070
[58] Yam V W W, Ko C C, Zhu N. J. Am. Chem. Soc., 2004, 126: 12734-12735
[59] Tan W J, Zhang Q, Zhang J J, Tian H. Org. Lett., 2009, 11: 161-164
[60] Zou Q, Jin J Y, Xu B, Ding L, Tian H. Tetrahedron, 2011, 67: 915-921
[61] Zou Q, Li X, Zhang J J, Zhou J, Sun B B, Tian H. Chem. Commun., 2012, 48: 2095-2097
[62] Wang Y P, Xu H P, Zhang X. Adv. Mater., 2009, 21: 2849-2864
[63] Feng Y L, Zhang Q, Tan W J, Zhang D Q, Tu Y Q,Åren H, Tian H. Chem. Phys. Lett., 2008, 455: 256-260
[64] Cao X H, Zhou J, Zou Y, Zhang M M, Yu X D, Zhang S, Yi T, Huang C H. Langmuir, 2011, 27: 5090-5097
[65] Irie M, Miyatake O, Uchida K. J. Am. Chem. Soc., 1992, 114: 8716-8717
[66] Duli Dc' D, Kudernac T, Puys A, Feringa B L, van Wees B J. Adv. Mater., 2007, 19: 2898-2902
[67] Lemieux V, Gauthier S, Branda N R. Angew. Chem. Int. Ed., 2006, 45: 6820-6824
[68] Ohsumi M, Fukaminato T, Irie M. Chem. Commun., 2005, 3921-3923
[69] Nourmohammadian F, Wu T Q, Branda N R. Chem. Commun., 2011, 47: 10954-10956
[70] Li X C, Ma Y Z, Wang B C, Li G A. Org. Lett., 2008, 10: 3639-3642
[71] Wu Y, Chen S J, Yang Y H, Zhang Q, Xie Y S, Tian H, Zhu W H. Chem. Commun., 2012, 48: 528-530
[72] Zhang H, Kou X X, Zhang Q, Qu D H, Tian H. Org. Biomol. Chem., 2011, 9: 4051-4056
[73] Zou Y, Yi T, Xiao S, Li F, Li C, Gao X, Wu J, Yu M, Huang C. J. Am. Chem. Soc., 2008, 130: 15750-15751
[74] Tan W, Zhou J, Li F, Yi T, Tian H. Chem. Asian J., 2011, 6: 1263-1268
[75] Vomasta D, Högner C, Branda N R, König B. Angew. Chem. Int. Ed., 2008, 47: 7644-7647
[76] Zhu W H, Meng X L, Yang Y H, Zhang Q, Xie Y S, Tian H. Chem. Eur. J., 2010, 16: 899-906
[77] Zhu W H, Yang Y H, Métivier R, Zhang Q, Guillot R, Xie Y S, Tian H, Nakatani K. Angew. Chem. Int. Ed., 2011, 50: 10986-10990
[78] Jin J Y, Zou L. Chin. J. Chem., 2011, 29: 2445-2450
[79] Katsonis N, Kudernac T, Walko M, van der Molen S J, van Wees B J, Feringa B L. Adv. Mater., 2006, 18: 1397-1400
[80] Kudernac T, van der Molen S J, van Wees B J, Feringa B L. Chem. Commun., 2006, 3597-3599
[81] Baron R, Onopriyenko A, Katz E, Lioubashevski O, Willner I, Wang S, Tian H. Chem. Commun., 2006, 2147-2149
[82] Yehezkeli O, Moshe M, Tel-Vered R, Feng Y, Li Y, Tian H, Willner I. Analyst, 2010, 135: 474-476
[83] Uchida K, Yamanoi Y, Yonezawa T, Nishihara H. J. Am. Chem. Soc., 2011, 133: 9239-9241
[84] Boyer J C, Carling C J, Gates B D, Branda N R. J. Am. Chem. Soc., 2010, 132: 15766-15772
[85] Díaz S A, Menéndez G O, Etchehon M H, Giordano L, Jovin T M, Jares-Erijman E A. ACS Nano, 2011, 5: 2795-2805
[86] Liu D, Chen W, Sun K, Deng K, Zhang W, Wang Z, Jiang X. Angew. Chem. Int. Ed., 2011, 50: 4103-4107
[87] Aznar E, Casasús R, García-Acosta B, Marcos M D, Martínez-Máñez R, Sancenón F, Soto J, Amorós P. Adv. Mater., 2007, 19: 2228-2231
[88] Nayak A, Liu H W, Belfort G. Angew. Chem. Int. Ed., 2006, 45: 4094-4098
[89] Zhang J J, Riskin M, Tel-Vered R, Tian H, Willner I. Langmuir, 2011, 27: 1380-1386
[90] Zhang J J, Riskin M, Freeman R, Tel-Vered R, Balogh D, Tian H, Willner I. ACS Nano, 2011, 5: 5936-5944
[91] Stoll R S, Hecht S. Angew. Chem. Int. Ed., 2010, 49: 5054-5075
[92] Zhang J J, Riskin M, Tel-Vered R, Tian H, Willner I. Chem. Eur. J., 2011, 17: 11237-11242
[93] Fukumoto S, Nakashima T, Kawai T. Angew. Chem. Int. Ed., 2011, 50: 1565-1568
[1] 刘晓珺, 秦朗, 俞燕蕾. 胆甾相液晶螺旋方向的光调控[J]. 化学进展, 2023, 35(2): 247-262.
[2] 曹小卫, 陈帅, 鲍敏, 史宏灿, 李巍. 金纳米星的制备、表面修饰及其在生物医学领域的应用研究[J]. 化学进展, 2018, 30(9): 1380-1391.
[3] 霍志铭, 李攻科*, 肖小华*. 有机光致变色材料在快速可视化检测中的应用[J]. 化学进展, 2017, 29(2/3): 252-261.
[4] 孙亮, 杨春晖, 马天慧, 朱崇强. 非线性光学晶体LiBX2(B=Ga, In; X=S, Se, Te)的研究[J]. 化学进展, 2014, 26(0203): 293-302.
[5] 程龙, 吕晓锋, 李铭, 张琳, 侯红卫. 功能配合物三阶非线性光学性能的研究[J]. 化学进展, 2013, 25(10): 1625-1630.
[6] 葛余俊, 赤骋, 伍蓉, 郭霞, 张巧, 杨剑*. 基于金纳米棒的核壳纳米结构及其光学性质研究[J]. 化学进展, 2012, 24(05): 776-783.
[7] 王延梅 王丽. 杯芳烃稀土配合物的光性能及应用*[J]. 化学进展, 2010, 22(0203): 427-432.
[8] 王树军,彭玉苓. 手性金属卟啉配合物的性能研究* [J]. 化学进展, 2009, 21(0708): 1515-1522.
[9] 傅晓飞,孙伟,房晨婕,郭瑞,严纯华. 分子基逻辑材料*[J]. 化学进展, 2009, 21(05): 957-963.
[10] 张旭红,杨述韬,王淑萍. 氮氧自由基-稀土配合物*[J]. 化学进展, 2008, 20(0708): 1073-1089.
[11] 张海璇,孟旬,李平. 光和温度刺激响应型材料*[J]. 化学进展, 2008, 20(05): 657-672.
[12] 龚涛,冯嘉春,韦玮,黄维. 二芳基乙烯类化合物用作光开关的最新研究*[J]. 化学进展, 2006, 18(06): 698-706.
[13] 冯秀丽,王公应,邱发礼. 钛酸盐功能材料的研究与应用[J]. 化学进展, 2005, 17(06): 1019-1027.
[14] 文国涛,丁晓媛,刘磊,郭庆祥. 1,2-二芳基乙烯分子无损读取研究*[J]. 化学进展, 2005, 17(05): 826-838.
[15] 宋江莉,王秀芬. LCST类水凝胶开关效应的研究进展[J]. 化学进展, 2004, 16(01): 56-.