English
新闻公告
More
化学进展 2012, Vol. 24 Issue (06): 1050-1057 前一篇   后一篇

所属专题: 计算化学

• 量子化学专辑 •

基于从头计算法的三维碳同素异形体结构设计

吴梦昊, 戴军, 曾晓成*   

  1. 美国内布拉斯加大学林肯分校化学系 物理及天文系 内布拉斯加州 林肯市 68588
  • 收稿日期:2011-11-01 修回日期:2012-03-01 出版日期:2012-06-24 发布日期:2012-05-11
  • 通讯作者: 曾晓成 E-mail:xzeng@unlserve.unl.edu

Ab Initio Computation Based Design of Three-Dimensional Structures of Carbon Allotropes

Wu Menghao, Dai Jun, Zeng Xiaocheng   

  1. Department of Chemistry and Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
  • Received:2011-11-01 Revised:2012-03-01 Online:2012-06-24 Published:2012-05-11
由于独特的成键特性,在不同温度和压强下,碳具有丰富的结构特性。除了实验上已发现各种同素异形体,理论计算也预言了丰富的新结构。在本文中,我们对第一性原理计算预言的三维碳同素异形体做了综述,特别地,我们着重关注了泡沫状的碳结构。碳泡沫主要由石墨片断以各种碳键连接而成,具体多孔结构及较大的表面积。另外,针对由低维碳结构,如碳富勒烯、纳米芽、纳米管及石墨烯等组成的三维碳超结构以及其他三维碳晶体我们也做了概述。这些新型碳结构有的由混杂的sp-sp2碳或者纯sp2碳组成(H-6, bct-4, C-20, K4等),有的质量密度比金刚石还大(C8, hP3, tl12, tp12等),有的可以由石墨在室温高压下转化而成(M碳, bct-4碳, W碳, Z碳等)。在这些预言的碳同素异形体中,有些在将来可能在实验室合成。
Carbon can exist in many different forms at different temperatures and pressures. Some allotropes of carbon have been predicted in theory but still have not been found in nature. In this article, we mainly overview a number of three-dimensional (3D) crystalline carbon allotropes, predicted by ab initio calculations. Particular attention will be placed on the carbon foams, which possess porous structures with a large surface area. Carbon foams are mostly composed of graphite segments connected by different types of carbon bonds. We will also review 3D carbon superstructures of low-dimensional allotropes, typically built from carbon fullerenes, nanobuds, nanotubes and graphene nanoribbons, as well as various other 3D crystalline carbon structures. Some of these carbon superstructures are composed of mixed sp-sp2 carbon or pure sp2 carbon (e.g., H-6, bct-4, C-20, K4), and some have larger mass density than diamond (C8, hP3, tl12, tp12), and some can be transformed from graphite at room temperature and high pressure (e.g., M carbon, bct-4 carbon, W carbon, Z carbon). Some of these theoretically predicted carbon allotropes may be synthesized in the laboratory in future.

中图分类号: 

()
[1] Hirsch A. Nat. Maters., 2010, 9: 868-871
[2] Rode A V, Gamaly E G, Luther-Davies B. Appl. Phys. A 2000, 70: 135-144
[3] Kroto H W, Heath J R, O'Brien S C, Curl R F, Smalley R E. Nature, 1985,318(6042): 162-163
[4] Iijima S. Nature, 1991,354(6348): 56-58
[5] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004,306(5696): 666-669
[6] Guldi D M, IIIescas B M, Atienza C M, Wielopolski M, Martin N. Chem. Soc. Rev., 2009, 38: 1587-1597
[7] Neto A H C, Guinea F, Peres N M R, Novoselov K S, Geim A K. Rev. Mod. Phys.,2009, 81: 109-162
[8] Coleman J N, Khan U, Blau W J, Gunko Y K. Carbon, 2006, 44(9): 1624-1652
[9] http: //www. kentchemistry. com/links/bonding/network. htm
[10] http: //worldscheaper. com/diamond-structure. html/diamond-crystal-structure
[11] http: //en. wikipedia. org/wiki/Lonsdaleite
[12] Pan Z, Sun H, Zhang Y, Chen C. Physical Review Letters, 2009, 102(5): art. no. 055503
[13] Karfunkel H R, Dressler T. J. Am. Chem. Soc., 1992, 114: 2285-2288
[14] Balaban A T, Klein D J, Folden C A. Chem. Phys. Lett., 1994, 217: 266-270
[15] Rode A V, Gamaly E G, Luther-Davies B. Appl. Phys. A, 2000, 70: 135-144
[16] Park N, Ihm J. Phys. Rev. B, 2000, 62: 7614-7618
[17] Umemoto K, Saito S, Berber S, Tomanek D. Phys. Rev. B, 2000, 64: art. no. 193409
[18] Ribeiro F J, Tangney P, Louie S G, Cohen M L. Phys. Rev. B, 2005, 72: art. no. 214109
[19] Kuc A, Seifert G. Phys. Rev. B, 2006, 74: art. no. 214104
[20] Klett J W, McMillan A D, Gallego N C, Walls C A. J. Mater. Sci.,2004, 39: 3659-3676
[21] Klett J, Hardy R, Romine E, Walls C, Burchell T. Carbon, 2000, 38: 953-973
[22] Park N, Hong S, Kim G, Jhi S H. J. Am. Chem. Soc., 2007, 129: 8999-9003
[23] Wu M, Wu X, Pei Y, Wang Y, Zeng X C. Chem. Commun., 2011, 47: 4406-4408
[24] Wu X, Zeng X C. Nano Lett., 2009, 9(1): 250-256
[25] Kuc A, Zhechkov L, Patchkovskii S, Seifert G, Heine T. Nano Lett., 2007, 7(1): 1-5
[26] Dimitrakakis G K, Tylianakis E, Froudakis G E. Nano Lett., 2008, 8(10): 3166-3170
[27] Wei D, Liu Y. Adv. Mater., 2008, 20: 2815-2841
[28] Ismach A, Kantorovich D, Joselevich E. J. Am. Chem. Soc., 2005, 127: 11554-11555
[29] Terrones M, Terrones H, Banhart F, Charlier J C, Ajayan P M. Science, 2000, 288: 1226-1229
[30] Terrones M, Banhart F, Grobert N, Charlier J C, Terrones H, Ajayan P M. Phys. Rev. Lett., 2002, 89: art. no. 075505
[31] Krasheninnikov A V, Nordlund K, Keinonen J, Bahhart F. Nucl. Instrum. Meth. Phys. Res. B, 2003, 202: 224-229
[32] Jin C H, Suenaga K, Iijima S. Nat. Nano., 2008, 3: 17-21
[33] Romo-Herrera J M, Terrones M, Terrones H, Dag S, Meunier V. Nano Lett. 2007, 7: 570-576
[34] Romo-Herrera J M, Terrones M, Terrones H, Meunier V. ACS Nano, 2008, 2: 2585-2591
[35] Romo-Herrera J M, Terrones M, Terrones H, Meunier V. Nanotechnology, 2008, 19: art. no. 315704
[36] Zhou R, Liu R, Li L, Wu X, Zeng X C. J. Phys. Chem. C, 2011, 115: 18174-18185
[37] Ivanovskaya V V, Ivanovskii A L. J. Superhard Mat., 2010, 32: 67-87
[38] Baughman R H, Galvao D S. Nature, 1993, 365: 735-737
[39] Liu A Y, Cohen M L, Hass K C, Tamor M A. Phys. Rev. B, 1991, 43: 6742-6745
[40] Liu A Y, Cohen M L. Phys. Rev. B, 1992, 45: 4579-4581
[41] Cté M, Grossman J C, Cohen M L, Louie S G. Phys. Rev. B, 1998, 58: 664-668
[42] Sunada T. Not. Am. Math. Soc.,2008, 55: 208-215
[43] Itoh M, Kotani M,Naito H, Sunada T, Kawazoe Y, Adschiri T. Phys. Rev. Lett., 2009,102: art. no. 055703
[44] Yao Y, Tse J S, Sun J, Klug D D, Martonak R, Iitaka T. Phys. Rev. Lett. 2009,102: art. no. 229601
[45] Rignanese G M, Charlier J C. Phys. Rev. B 2008, 78: art. no. 125415
[46] Hoffmann R T, Hughbanks T, Kertesz M, Bird P H. J. Am. Chem. Soc.,1983, 105: 4831-4832
[47] Zhu Q, Oganov A, Salvadó M, Pertierra P, Lyakhov A. Phys. Rev. B, 2011, 83 (19): art. no. 193410
[48] Utsumi W, Yagi T, Science, 1991,252: 1542-1544
[49] Hanfland M, Syassen K, Sonnenschein R. Phys. Rev. B, 1989, 40: 1951-1954
[50] Yagi T, Utsumi W, Yamakata M A, Kikegawa T, Shimomura O. Phys. Rev. B, 1992, 46: 6031-6039
[51] Takano K J, Harashima H, Wakatsuki M. Jpn. J. Appl. Phys., 1991, 30: L860-L863
[52] Zhao Y X, Spain I L. Phys. Rev. B, 1989, 40: 993-997
[53] Li Q, Ma Y, Oganov A R, Wang H, Wang H, Xu Y, Cui T, Mao H, Zou G. Phys. Rev. Lett.,2009,102: art. no. 175506
[54] Umemoto K, Wentzcovitch R M, Saito S, Miyake T. Phys. Rev. Lett., 2010, art. no. 104: 125504
[55] Zhou X, Qian G, Dong X, Zhang L, Tian Y, Wang H. Phys. Rev. B, 2010, 82: art. no. 134126
[56] Wang J, Chen C, Kawazoe Y. Phys. Rev. Lett. 2011: 106: art. no. 075501
[57] Amsler M, Flores-Livas J A, Lehtovaara L, Balima F, Ghasemi S A, Machon D, Pailhs S, Willand A, Caliste D, Botti S, Miguel A S, Goedecker S, Marques M A L. Phys. Rev. Lett., 2012, 108: art. no. 065501
[58] Correa A, Bonev S, Galli G. Proc. Natl. Acad. Sci. USA, 2006, 103 (5): 1204-1208
[59] Sheng X, Yan Q, Ye F, Zheng Q, Su G. Phys. Rev. Lett., 2011, 106: art. no. 155703
[60] Winkler B, Pickard C J, Milman V, Thimm G. Chem. Phys. Lett., 2001, 37: 36-42
[1] 张永, 张辉, 张逸, 高蕾, 卢建臣, 蔡金明. 表面合成异质原子掺杂的石墨烯纳米带[J]. 化学进展, 2023, 35(1): 105-118.
[2] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[3] 姜鸿基, 王美丽, 卢志炜, 叶尚辉, 董晓臣. 石墨烯基人工智能柔性传感器[J]. 化学进展, 2022, 34(5): 1166-1180.
[4] 马晓清. 石墨炔在光催化及光电催化中的应用[J]. 化学进展, 2022, 34(5): 1042-1060.
[5] 张辉, 熊玮, 卢建臣, 蔡金明. 超高真空下纳米石墨烯磁性及调控[J]. 化学进展, 2022, 34(3): 557-567.
[6] 向笑笑, 田晓雯, 刘会娥, 陈爽, 朱亚男, 薄玉琴. 石墨烯基气凝胶小球的可控制备[J]. 化学进展, 2021, 33(7): 1092-1099.
[7] 吴磊, 刘利会, 陈淑芬. 基于碳基透明电极的柔性有机电致发光二极管[J]. 化学进展, 2021, 33(5): 802-817.
[8] 朱彬彬, 郑晓慧, 杨光, 曾旭, 邱伟, 徐斌. 氧化石墨烯分离膜机械性能调控[J]. 化学进展, 2021, 33(4): 670-677.
[9] 吕苏叶, 邹亮, 管寿梁, 李红变. 石墨烯在神经电信号检测中的应用[J]. 化学进展, 2021, 33(4): 568-580.
[10] 罗贤升, 邓汉林, 赵江颖, 李志华, 柴春鹏, 黄木华. 多孔氮化石墨烯(C2N)的合成及应用[J]. 化学进展, 2021, 33(3): 355-367.
[11] 祁建磊, 徐琴琴, 孙剑飞, 周丹, 银建中. 石墨烯基单原子催化剂的合成、表征及分析[J]. 化学进展, 2020, 32(5): 505-518.
[12] 龚乐, 杨蓉, 刘瑞, 陈利萍, 燕映霖, 冯祖飞. 石墨烯量子点在储能器件中的应用[J]. 化学进展, 2019, 31(7): 1020-1030.
[13] 刘杰, 曾渊, 张俊, 张海军, 刘江昊. 三维石墨烯基材料的制备、结构与性能[J]. 化学进展, 2019, 31(5): 667-680.
[14] 耿奥博, 钟强, 梅长彤, 王林洁, 徐立杰, 甘露. 湿法改性石墨烯在制备橡胶复合材料中的应用[J]. 化学进展, 2019, 31(5): 738-751.
[15] 王晓娟, 刘真真, 陈奇, 王小强, 黄方. 石墨烯材料与蛋白质的相互作用[J]. 化学进展, 2019, 31(2/3): 236-244.