English
新闻公告
More
化学进展 2012, Vol. 24 Issue (06): 950-956 前一篇   后一篇

所属专题: 计算化学

• 量子化学专辑 •

计算光化学

刘亚军*   

  1. 理论及计算光化学教育部重点实验室 北京师范大学化学学院 北京 100875
  • 收稿日期:2011-11-01 修回日期:2012-02-01 出版日期:2012-06-24 发布日期:2012-05-11
  • 通讯作者: 刘亚军 E-mail:yajun.liu@bnu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.21073017, 20873010,20720102038)资助

Computational Photochemistry

Liu Yajun   

  1. Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
  • Received:2011-11-01 Revised:2012-02-01 Online:2012-06-24 Published:2012-05-11
本文从光化学的最基本概念入手,简要介绍了计算光化学理论方法的发展历程和典型应用,并对不同时期的工作做简要评述,以期读者对整个计算光化学有一个整体的了解。本文还介绍了计算机硬件的发展对计算光化学的影响。最后指出目前计算光化学研究的困难和存在问题以供同行讨论。
This review starts with the most basic concepts in photochemistry, followed by the introduction of developing process of theoretical methods and the related typical applications, as well as our comments. We pursue a goal that the readers can integrally understand the discipline of computational photochemistry by this review. We also indicated the effect of hardware development and the current difficulties and problems in the computational photochemistry for peer discussion. Contents
1 Introduction
2 Basic concepts in photochemistry
2.1 Potential energy surface
2.2 Vertical and adiabatic excitation energy
2.3 Conical intersection
3 Development of computational methods and typical applications in photochemistry
3.1 Semi-empirical methods
3.2 Single-reference ab initio methods
3.3 Multi-reference ab initio methods
3.4 TDDFT methods
3.5 Some combined or improved methods
3.6 Brief comments on all kinds of methods
4 Effect of the development of hardware on the computational photochemsitry
5 Conclusions and outlook

中图分类号: 

()
[1] Braslavsky S. Pure Appl. Chem., 2007, 79: 293-465
[2] Braslavsky S E, Houk K N. Pure Appl. Chem., 1988, 60: 1055-1106
[3] Verhoeven J. Pure Appl. Chem., 1996, 68: 2223-2286
[4] Michl J. Top. Curr. Chem., 1974, 46: 1-59
[5] Schleyer P R, Allinger N, Clark T, Gasteiger J, Kollman P, Schaefer III H, Schreiner P. Encyclopedia of Computational Chemistry. Wiley, 1998
[6] Serrano-Andrés L, Roca-Sanjuán D, Olaso-González G. In Photochemistry Ed. Albini A, London: Royal Society, 2010, Vol. 38, 11-37
[7] Domcke W, Yarkony D, Köppel H, Ed. Conical Intersections: Electronic Structure, Dynamics & Spectroscopy, Singapore: World Scientific Pub Co., 2004
[8] Pariser R, Parr R G. J. Chem. Phys., 1953, 21: 466-471
[9] Pariser R, Parr R G. J. Chem. Phys., 1953, 21: 767-776
[10] Zimmerman H E. Science, 1966, 153: 837-844
[11] Cramer C J. Essentials of Computational Chemistry. Chichester:Wiley, 2004
[12] Zimmerman H E. J. Am. Chem. Soc., 1966, 88: 1566-1567
[13] Zimmerman H E, Durr H G, Givens R S, Lewis R G. J. Am. Chem. Soc., 1967, 89: 1863-1874
[14] Zimmerman H E. J. Am. Chem. Soc., 1966, 88: 1564-1565
[15] Szabo A, Ostlund N S. Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory. Dover Pubns, 1996
[16] Roos B. Chem. Phys. Lett., 1972, 15: 153-159
[17] Huron B, Malrieu J P, Rancurel P. J. Chem. Phys., 1973, 58: 5745-5759
[18] Turro N J, McVey J, Ramamurthy V, Lechtken P. Angew. Chem. Int. Ed., 1979, 18: 572-586
[19] Gerhartz W, Poshusta R D, Michl J. J. Am. Chem. Soc., 1976, 98: 6427-6443
[20] Gerhartz W, Poshusta R D, Michl J. J. Am. Chem. Soc., 1977, 99: 4263-4271
[21] Michl J. Mol. Photochem., 1972, 4: 243-256
[22] Salem L. J. Am. Chem. Soc., 1974, 96: 3486-3501
[23] Salem L, Dauben W G, Turro N J. J. Chim. Phys. Phys.-Chim. Biol., 1973, 70: 694-696
[24] Salem L, Leforestier C, Segal G, Wetmore R. J. Am. Chem. Soc., 1975, 97: 479-487
[25] Salem L, Rowland C. Angew. Chem. Int. Ed., 1972, 11: 92-111
[26] Dauben W G, Salem L, Turro N J. Acc. Chem. Res., 1975, 8: 41-54
[27] Woodward R B, Hoffmann R. Angew. Chem. Int. Ed., 1969, 8: 781-853
[28] Longuet-Higgins H. C., Abrahams, E. W. J. Am. Chem. Soc., 1965, 87: 2045-2046
[29] Van der Lugt W T A M, Oosterho L J. J. Am. Chem. Soc., 1969, 91: 6042-6049
[30] Coester F. Nuclear Physics, 1958, 7: 421-424
[31] Coester F, Kummel H. Nuclear Physics, 1960, 17: 477-485
[32] í ek J. J. Chem. Phys., 1966, 45: 4256-4266
[33] Stanton J F, Bartlett R J. J. Chem. Phys., 1993, 98: 7029-7039
[34] Christiansen O, Koch H, Jorgensen P. Chem. Phys. Lett., 1995, 243: 409-418
[35] Nakatsuji H. Chem. Phys. Lett., 1979, 67: 334-342
[36] Foresman J B, Head-Gordon M, Pople J A, Frisch M J. J. Phys. Chem., 1992, 96: 135-149.
[37] Eade R H A, Robb M A. Chem. Phys. Lett., 1981, 83: 362-368
[38] Brongersma H H, Oosterhoff L J. Chem. Phys. Lett., 1969, 3: 437-440
[39] Werner H J, Meyer W. J. Chem. Phys., 1981, 74: 5802-5807
[40] Bernardi F, De S, Olivucci M, Robb M A. J. Am. Chem. Soc., 1990, 112: 1737-1744
[41] Roos B O, Taylor P R. Chem. Phys., 1980, 48: 157-173
[42] Buenker R J, Peyerimh, S D. Theor. Chim. Acta., 1974, 35: 33-58
[43] Fülscher M P, Andersson K, Roos B O. J. Phys. Chem., 1992, 96: 9204-9212
[44] Serrano-Andrés L, Merchán M, Nebotgil I, Lindh R, Roos B O. J. Chem. Phys., 1993, 98: 3151-3162
[45] Andersson K, Malmqvist P Å, Roos B O, Sadlej A J, Wolinski K. J. Phys. Chem., 1990, 94: 5483-5488
[46] Fang W H. J. Am. Chem. Soc., 1999, 121: 8376-8384
[47] Fang W H, Liu R Z. J. Am. Chem. Soc., 2000, 122: 10886-10894
[48] Fang W. H. Acc. Chem. Res., 2008, 41: 452-457
[49] Liu Y J, Fang W H. Adv. Quantum Chem., 2009, 56: 1-29
[50] Liu Y J, Tian Y C, Fang W H. J. Chem. Phys., 2010, 132: art. no. 014306
[51] Li W Z, Chen S F, Liu Y J. J. Chem. Phys., 2011, 134: art. no. 114303
[52] Cembran A, Bernardi F, Olivucci M, Garavelli M. J. Am. Chem. Soc., 2004, 126: 16018-16037
[53] Bauernschmitt R, Ahlrichs R. Chem. Phys. Lett., 1996, 256: 454-464
[54] Marques M A L, Gross E K U. Annu. Rev. Phys. Chem., 2004, 55: 427-455
[55] Halls M D, Schlegel H B. Chem. Mater., 2001, 13: 2632-2640
[56] Dreuw A, Head-Gordon M. J. Am. Chem. Soc., 2004, 126: 4007-4016
[57] Tozer D J, Amos R D, Handy N C, Roos B O, Serrano- Andrés L. Mol. Phys., 1999, 97: 859-868
[58] Yanai T, Tew D P, Handy N C. Chem. Phys. Lett., 2004, 393: 51-57
[59] Oddershede J. Adv. Chem. Phys., 1987: 201-239
[60] Dapprich S, Komáromi I, Byun K S, Morokuma K, Frisch M J. J. Mol. Struc.: THEOCHEM, 1999, 461: 1-21
[61] Ferré N, Olivucci M. J. Am. Chem. Soc., 2003, 125: 6868-6869
[62] Frutos L M, Andruniów T, Santoro F, Ferré N, Olivucci M. Proc. Natl. Acad. Sci. USA, 2007, 104: 7764-7769
[63] Martin M E, Negri F, Olivucci M. J. Am. Chem. Soc., 2004, 126: 5452-5464
[64] Sinicropi A, Andruniow T, Ferré N, Basosi R, Olivucci M. J. Am. Chem. Soc., 2005, 127: 11534-11535
[65] Navizet I, Liu Y J, Ferre N, Xiao H Y, Fang W H, Lindh R. J. Am. Chem. Soc., 2010, 132: 706-712
[66] Chen S F, Liu Y J, Navizet I, Ferre N, Fang W H, Lindh R. J. Chem. Theory Comput., 2011, 7: 798-803
[67] Grimme S, Waletzke M. J. Chem. Phys., 1999, 111: 5645-5655
[68] Silva-Junior M R, Schreiber M, Sauer S P A, Thiel W. J. Chem. Phys., 2008, 129: art. no. 104103
[69] Kleinschmidt M, Tatchen J, Marian C M. J. Comput. Chem., 2002, 23: 824-833
[70] Mahapatra U S, Datta B, Mukherjee D. J. Chem. Phys., 1999, 110: 6171-6188
[71] Evangelista F A, Allen W D, Schaefer H F Ⅲ. J. Chem. Phys., 2007, 127: art. no. 024102
[72] Evangelista F A, Allen W D, Schaefer H F Ⅲ. J. Chem. Phys., 2006, 125: art. no. 154113
[73] Evangelista F A, Simmonett A C, Allen W D, Schaefer H F Ⅲ, Gauss J. J. Chem. Phys., 2008, 128: art. no. 124104
[74] Evangelista F A, Prochnow E, Gauss J, Schaefer H F, Ⅲ. J. Chem. Phys., 2010, 132: art. no. 074107
[75] Das S, Mukherjee D, Kallay M. J. Chem. Phys., 2010, 132: art. no. 074103
[76] Bhaskaran-Nair K, Demel O, Pittner J. J. Chem. Phys., 2010, 132: art. no. 154105
[77] Mahapatra U S, Chattopadhyay S. J. Chem. Phys., 2011, 134: art. no. 044113
[78] Li X, Paldus J. J. Chem. Phys., 2011, 134: art. no. 074301
[79] Li X, Paldus J. J. Chem. Phys., 2010, 133: art. no. 024102 (13 pages)
[80] Li X, Paldus J. J. Chem. Phys., 2010, 132: art. no. 114103
[81] Malmqvist P Å, Pierloot K, Shahi A R M, Cramer C J, Gagliardi L. J. Chem. Phys., 2008, 128: art. no. 204109
[82] Shahi A R M, Cramer C J, Gagliardi L. Phys. Chem. Chem. Phys., 2009, 11: 10964-10972
[83] González L, Escudero D, Serrano-Andrés L. ChemPhysChem, 2012, 13: 28-51
[84] Borin A C, Serrano-Andrés L, Ludwig V, Canuto S. Phys. Chem. Chem. Phys., 2003, 5: 5001-5009
[85] Grimme S, Waletzke M. J. Chem. Phys., 1999, 111: 5645-5655
[86] Olivucci M. In Computational Photochemistry (Ed. Olivucci M), Ed., Amsterdam: Elsevier, 2005
[87] Mikhailov I A, Tafur S, Masunov A E. Phys. Rev. A, 2008, 77: art. no. 012510
[88] Salzmann S, Marian C M. Photochem. Photobiol. Sci., 2009, 8: 1655-1666
[89] Salzmann S, Marian C M. Chem. Phys. Lett., 2008, 463: 400-404
[90] Parac M, Doerr M, Marian C M, Thiel W. J. Comput. Chem., 2010, 31: 90-106
[91] Helgaker T, Jörgensen P, Olsen J. Molecular Electronic-Structure Theory. New York: Wiley, 2000
[92] Yasuda K. J. Comput. Chem., 2008, 29: 334-342
[93] Zhmurov A, Dima R I, Kholodov Y, Barsegov V. Proteins-Structure Function and Bioinformatics, 2010, 78: 2984-2999
[94] Bauer B A, Davis J E, Taufer M, Patel S. J. Comput. Chem., 2010, 32: 375-385
[95] Shi Y, Green W H, Wong H W, Oluwole O O. Combust. Flame, 2011, 158: 836-847
[96] Aubert D, Teyssier R. Astrophys. J., 2010, 724: 244-266
[97] DePrince A E, Hammond J R. J. Chem. Theory Comput., 2011, 7: 1287-1295
[98] Isborn C M, Luehr N, Ufimtsev I S, Martinez T J. J. Chem. Theory Comput., 2011, 7: 1814-1823
[99] Michl J. In Computational Photochemistry (Ed. Olivucci M), Amsterdam: Elsevier, 2005
[100] Aquilante F, Malmqvist P Å, Pedersen T B, Ghosh A, Roos B O. J. Chem. Theory Comput., 2008, 4: 694-702
[1] 王芷铉, 郑少奎. 选择性离子吸附原理与材料制备[J]. 化学进展, 2023, 35(5): 780-793.
[2] 李海东, 樊江莉, 彭孝军. 识别次氯酸的荧光探针[J]. 化学进展, 2017, 29(1): 17-35.
[3] 张伟伟, 钟欣欣, 司玉冰, 赵仪*. Non-Condon电子转移速率理论与含时波包方法[J]. 化学进展, 2012, 24(06): 1166-1174.
[4] 贾建峰, 武海顺*. Ⅲ-Ⅴ族多面体团簇的稳定性规律[J]. 化学进展, 2012, 24(06): 1008-1022.
[5] 马玉臣*, 刘成卜. 研究激发态的多体格林函数理论[J]. 化学进展, 2012, 24(06): 981-1000.
[6] 苏静, 李隽. 锕系化合物荧光光谱理论研究进展[J]. 化学进展, 2011, 23(7): 1329-1337.
[7] 丁万见,方维海. 光化学反应的从头算研究*[J]. 化学进展, 2007, 19(10): 1449-1459.
[8] 吕凤婷,高莉宁,房喻. 基于激发态分子内质子转移的新一代荧光探针*[J]. 化学进展, 2005, 17(05): 773-779.
[9] 李震宇 贺 伟 杨金龙. 密度泛函理论及其数值方法新进展*[J]. 化学进展, 2005, 17(02): 192-202.
[10] 陶海升,李茂国,吴丽芳,方宾. 电化学氟化最新进展*[J]. 化学进展, 2004, 16(02): 213-.
[11] 戴瑛,黎乐民. 密度泛函理论处理激发态与多重态结构研究进展[J]. 化学进展, 2001, 13(03): 167-.
[12] 樊美公,于联合. 光反应中间体及高级激发态的光化学——分步双激光技术的应用研究*[J]. 化学进展, 1996, 8(02): 129-.
[13] 吴礼光,刘茉娥,朱长乐. 生物传感器研究进展[J]. 化学进展, 1995, 7(04): 287-.
阅读次数
全文


摘要

计算光化学