English
新闻公告
More
化学进展 2017, Vol. 29 Issue (1): 17-35 DOI: 10.7536/PC161210 前一篇   后一篇

• 综述 •

识别次氯酸的荧光探针

李海东, 樊江莉, 彭孝军*   

  1. 大连理工大学精细化工国家重点实验室 大连 116024
  • 收稿日期:2016-12-07 修回日期:2016-12-25 出版日期:2017-01-05 发布日期:2017-01-10
  • 通讯作者: 彭孝军 E-mail:pengxj@dlut.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21136002,21421005)资助

Fluorescent Probes for the Recognition of Hypochlorous Acid

Haidong Li, Jiangli Fan, Xiaojun Peng*   

  1. State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
  • Received:2016-12-07 Revised:2016-12-25 Online:2017-01-05 Published:2017-01-10
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21136002, 21421005).
机体内的次氯酸(HClO)是由过氧化氢和氯离子在髓过氧化物酶(MPO)催化作用下产生。由于其在细胞的分化、迁移、传导和免疫等生理过程中起着非常重要的调控作用,因此对次氯酸的识别与检测有着非常重要的意义。荧光探针法具有灵敏度高、选择性好、检测限低、响应时间短、可视化检测和原位无损等优点,引起了科研工作者利用该方法对机体内次氯酸的研究兴趣。本文基于荧光探针与次氯酸的识别机制,主要综述了近三年用来识别次氯酸荧光探针研究进展。讨论了次氯酸荧光探针的设计策略、响应模式以及生物应用,并对次氯酸荧光探针的发展方向以及生物应用进行了展望。
Hypochlorous acid (HClO) is generated from hydrogen peroxide and chloridion via the catalysis of myeloperoxidase (MPO) in vivo. Normally, HClO acts as omnipresent intracellular regulator within life cycle of the cell, activating signaling pathways for cell differentiation, migration, transmission, proliferation and immune in physiological and pathological processes. Therefore, it is of vital importance to the detection and recognition of hypochlorous acid. Owing to simple operation, high sensitivity, sensitivity, low detection limit, rapid response, excellent spatial and temporal (spatiotemporal) resolution and especially nondestructive characteristics, Fluorescent probe technique has been paid special attention to research the physiological function of hypochlorous acid in vivo. Based on the recognition mechanism of fluorescent probes with hypochlorous acid, this review mainly summarizes the research progress of fluorescent probe for the recognition of hypochlorous acid in last three years. The design strategy of molecular structures and response pattern of these probes are also discussed as well as biological application. The development direction and biological application of hypochlorous acid fluorescent probes are also prospected.

Contents
1 Introduction
2 Types of fluorescent probes for HClO
2.1 Oxidation deoximation reaction
2.2 Oxidation unsaturated double bond reaction
2.3 Oxidation p-methoxy phenol reaction
2.4 Oxidation anisidine reaction
2.5 Oxidation chalcogenide (S, Se and Te) reaction
2.6 Oxidative dehydrogenation reaction
2.7 Oxidation hydrazide reaction
2.8 Oxidation metal ion reaction
2.9 Other types of oxidation reaction
3 Conclusion and outlook

中图分类号: 

()
[1] Judd S J, Jeffrey J A. Water Res., 1995, 29:1203.
[2] Winterbourn C C. J. Clin. Invest., 1986, 78:545.
[3] Harrison J E, Schultz J. Journal Biol. Chem., 1976, 251:1371.
[4] Shepherd J, Hilderbrand S A, Waterman P, Heinecke J W, Weissleder R, Libby P. Chem. Biol., 2007, 14:1221.
[5] Winterbourn C C, Hampton M B, Livesey J H, Kettle A J. J. Biol. Chem., 2006, 281:39860.
[6] Winterbourn C C, Brennan S O. Biochem. J., 1997, 326:87.
[7] Dickinson B C, Chang C J. Nat. Chem. biol., 2011, 7:504.
[8] Winterbourn C C, Kettle A J. Free Radical Biol. Med., 2000, 29:403.
[9] Daugherty A, Dunn J L, Rateri D L, Heinecke J W. J. Clin. Invest., 1994, 94:437.
[10] Sugiyama S, Okada Y, Sukhova G K, Virmani R, Heinecke J W, Libby P. Am. J. Pathol., 2001, 158:879.
[11] Yap Y W, Whiteman M, Cheung N S. Cellular Signal., 2007, 19:219.
[12] Miljkovic-Lolic M, Silbergleit R, Fiskum G, Rosenthal R E. Brain Res., 2003, 971:90.
[13] Pattison D I, Davies M J. Biochemistry, 2006, 45:8152.
[14] Whiteman M, Rose P, Siau J L, Cheung N S, Tan G S, Halliwell B, Armstrong J S. Free Radical Biol. Med., 2005, 38:1571.
[15] Hazell L J, Arnold L, Flowers D, Waeg G, Malle E, Stocker R. J. Clin. Invest., 1996, 97:1535.
[16] Bonanni A, Campanella L, Gatta T, Gregori E, Tomassetti M. Food Chem., 2007, 102:751.
[17] Ordeig O, Mas R, Gonzalo J, Del Campo F J, Muñoz F J, De Haro C. Electroanal., 2005, 17:1641.
[18] Soldatkin A P, Gorchkov D V, Martelet C, Jaffrezic-Renault N. Sens. Actuators, B 1997, 43:99.
[19] Soto N O, Horstkotte B, March J G, Alba P L, Martínez L L, Martín V C. Anal. Chim. Acta, 2008, 611:182.
[20] Cui K, Zhang D Q, Zhang G X, Zhu D B. Tetrahedron Lett., 2010, 51:6052.
[21] Hwang J, Choi M G, Bae J, Chang S. Org. Biomol. Chem., 2011, 9:7011.
[22] Yuan L, Wang L, Agrawalla B K, Park S, Zhu H, Sivaraman B, Peng J J, Xu Q, Chang Y. J. Am. Chem. Soc., 2015, 137:5930.
[23] Zhu B C, Li P, Shu W, Wang X, Liu C Y, Wang Y, Wang Z K, Wang Y W, Tang B. Anal. Chem., 2016, 88:12532.
[24] Li H D, Yao Q C, Fan J L, Jiang N, Wang J Y, Xia J, Peng X J. Chem. Commun., 2015, 51:16225.
[25] Li H D, Yao Q C, Fan J L, Du J J, Wang J Y, Peng X J. Dyes Pigments, 2016, 133:79.
[26] 李海东(Li H D), 姚起超(Yao Q C), 樊江莉(Fan J L), 杜健军(Du J J), 彭孝军(Peng X J). 应用化学(Chinese Journal of Applied Chemistry), 2016, 33(10):1109.
[27] Chen X Q, Zhou Y, Peng X J, Yoon J. Chem Soc Rev, 2010, 39:2120.
[28] Xu F, Li H D, Yao Q C, Fan J L, Wang J Y, Peng X J. J. Mater. Chem. B, 2016, 4:7363.
[29] Xiao H B, Li P, Zhang S, Zhang W, Zhang W, Tang B. Chem. Commun., 2016, 52:12741.
[30] Liu G J, Long Z, Lv H J, Li C Y, Xing G W. Chem. Commun., 2016, 52:10233.
[31] Wu T, Liu C, Chien C, Lin S. Chem. Eur. J., 2013, 19:11672.
[32] Goswami S, Paul S, Manna A. Dalton Trans., 2013, 42:10097.
[33] Wang Q, Liu C, Chang J J, Lu Y, He S, Zhao L C, Zeng X S. Dyes Pigments, 2013, 99:733.
[34] Xu Q L, Heo C H, Kim J A, Lee H S, Hu Y, Kim D, Swamy K M K, Kim G, Nam S J, Kim H M, Yoon J. Anal. Chem., 2016, 88:661.
[35] Wang P, Wu J, Di C X, Zhou R, Zhang H, Su P R, Xu C, Zhou P P, Ge Y S, Liu D, Liu W S, Tang Y. Biosens. Bioelectron., 2016. DOI:10.1016/j.bios.2016.10.050.
[36] Kawagoe R, Takashima I, Uchinomiya S, Ojida A. Chem. Sci., 2017. DOI:10.1039/c6sc03856e.
[37] 高敏(Gao M), 于法标(Yu F B), 陈令新(Chen L X). 化学进展(Progress in Chemistry), 2014,26(06):1065.
[38] Mao Z Q, Feng W Q, Li Z, Zeng L Y, Lv W J, Liu Z H. Chem. Sci., 2016, 7:5230.
[39] Wang C, Song X B, Han Z, Li X Y, Xu Y P, Xiao Y. ACS Chem. Biol., 2016, 11:2033.
[40] 景晓彤(Jing X T), 于法标(Yu F B), 陈令新(Chen L X). 化学进展(Progress in Chemistry), 2014, 26(05):866.
[41] Ren X T, Wang F, Lv J, Wei T W, Zhang W, Wang Y, Chen X Q. Dyes Pigments, 2016, 129:156.
[42] Chen C Y, Liu W, Xu C, Liu W S. Biosens. Bioelectron., 2016, 85:46.
[43] 杨润洁(Yang R J), 唐尧(Tang Y), 朱维平(Zhu W P). 高等学校化学学报(Chemical Journal of Chinese University), 2016, 37(04):643.
[44] Yin W Z, Zhu H J, Wang R Y. Dyes Pigments, 2014, 107:127.
[45] Zhao J, Li H J, Yang K, Sun S G, Lu A P, Xu Y Q. New J. Chem., 2014, 38:3371.
[46] Goswami S, Maity S, Maity A C, Das A K. Sens. Actuators B, 2014, 204:741.
[47] Wang B, Wen J, Gao K, Yan H, Xu Y Q, Li H J, Chen J X, Wang W, Sun S G. RSC Adv., 2016, 6:35315.
[48] Shi W, Xu L X, Xie Z F, Chen X. Dyes Pigments, 2016, 133:406.
[49] Wu W, Zhao Z, Dai X, Su L, Zhao B. Sens. Actuators B, 2016, 232:390.
[50] Chang C C, Wang F, Qiang J, Zhang Z J, Chen Y H, Zhang W, Wang Y, Chen X Q. Sens. Actuators B, 2017, 234:22.
[51] Lin W Y, Long L L, Chen B B, Tan W. Chem. Eur. J., 2009, 15:2305.
[52] Guo B P, Nie H L, Yang W, Tian Y, Jing J, Zhang X L. Sens. Actuators B, 2016, 236:459.
[53] Emrullaho?lu M, üçüncü M, Karaku?E. Chem. Commun., 2013, 49:7836.
[54] Kang J, Huo F J, Yue Y K, Wen Y, Chao J B, Zhang Y B, Yin C X. Dyes Pigments, 2017, 136:852.
[55] Wu G F, Zeng F, Wu S Z. Anal. Methods, 2013, 5:5589.
[56] Cheng G H, Fan J L, Sun W, Sui K, Jin X, Wang J Y, Peng X J. Analyst, 2013, 138:6091.
[57] Lou Z R, Li P, Song P, Han K L. Analyst, 2013, 138:6291.
[58] Xing P F, Gao K, Wang B, Gao J, Yan H, Wen J, Li W S, Xu Y Q, Li H J, Chen J X, Wang W, Sun S G. Chem. Commun., 2016, 52:5064.
[59] Wang X, Song F L, Peng X J. Dyes Pigments, 2016, 125:89.
[60] Zha J Y, Fu B Q, Qin C Q, Zeng L T, Hu X C. RSC Adv., 2014, 4:43110.
[61] Xu J C, Yuan H Q, Qin C Q, Zeng L T, Bao G. RSC Adv., 2016, 6:107525.
[62] Zhou L Y, Lu D Q, Wang Q Q, Hu S Q, Wang H F, Sun H Y, Zhang X B. Spectrochim Acta A, 2016, 166:129.
[63] Wu Y L, Wang J, Zeng F, Huang S L, Huang J, Xie H T, Yu C M, Wu S Z. ACS Appl. Mater. Interfaces, 2016, 8:1511.
[64] Sun Z, Liu F, Chen Y, Tam P K H, Yang D. Org. Lett., 2008, 10:2171.
[65] Hu J J, Wong N, Gu Q S, Bai X Y, Ye S, Yang D. Org. Lett., 2014, 16:3544.
[66] Zhang W J, Guo C, Liu L H, Qin J G, Yang C L. Org. Biomol. Chem., 2011, 9:5560.
[67] Koide Y, Urano Y, Kenmoku S, Kojima H, Nagano T. J. Am. Chem. Soc., 2007, 129:10324.
[68] Guo T, Cui L, Shen J N, Wang R, Zhu W P, Xu Y F, Qian X H. Chem. Commun., 2013, 49:1862.
[69] Liao Y, Wang M, Li K, Yang Z, Hou J, Wu M, Liu Y, Yu X. RSC Adv., 2015, 5:18275.
[70] Zhou X, Jiang Y, Zhao X, Guo D. Talanta, 2016, 160:470.
[71] Ye Z Q, Zhang R, Song B, Dai Z C, Jin D Y, Goldys E M, Yuan J L. Dalton Trans., 2014, 43:8414.
[72] Lu F, Nabeshima T. Dalton Trans., 2014, 43:9529.
[73] Kenmoku S, Urano Y, Kojima H, Nagano T. J. Am. Chem. Soc., 2007, 129:7313.
[74] Koide Y, Urano Y, Hanaoka K, Terai T, Nagano T. J. Am. Chem. Soc., 2011, 133:5680.
[75] Best Q A, Sattenapally N, Dyer D J, Scott C N, Mccarroll M E. J. Am. Chem. Soc., 2013, 135:13365.
[76] Xu Q L, Lee K, Lee S, Lee K M, Lee W, Yoon J. J. Am. Chem. Soc., 2013, 135:9944.
[77] Chen X Q, Lee K, Ren X T, Ryu J, Kim G. Nat. Protoc., 2016, 11:1219.
[78] Ding S S, Zhang Q, Xue S H, Feng G Q. Analyst, 2015, 140:4687.
[79] Zhou J, Li L H, Shi W, Gao X H, Li X H, Ma H M. Chem. Sci., 2015, 6:4884.
[80] Zhao Q, Huang C H, Li F Y. Chem. Soc. Rev., 2011, 40:2508.
[81] Zhang R, Ye Z Q, Song B, Dai Z C, An X, Yuan J L. Inorg. Chem., 2013, 52:10325.
[82] Liu F Y, Gao Y L, Wang J T, Sun S G. Analyst, 2014, 139:3324.
[83] Wang X Z, Zhou L, Qiang F, Wang F Y, Wang R, Zhao C C. Anal. Chim. Acta, 2016, 911:114.
[84] Kim T, Park S, Choi Y, Kim Y. Chem. Asian J., 2011, 6:1358.
[85] Liu S, Vedamalai M, Wu S. Anal. Chim. Acta, 2013, 800:71.
[86] Tian F S, Jia Y, Zhang Y N, Song W, Zhao G J, Qu Z J, Li C Y, Chen Y H, Li P. Biosens. Bioelectron., 2016, 86:68.
[87] Liu S, Wu S. Org. Lett., 2013, 15:878.
[88] Wang B S, Li P, Yu F B, Song P, Sun X F, Yang S Q, Lou Z R, Han K L. Chem. Commun., 2013, 49:1014.
[89] Venkatesan P, Wu S. Analyst, 2015, 140:1349.
[90] Manjare S T, Kim J, Lee Y, Churchill D G. Org. Lett., 2014, 16:520.
[91] Li G P, Zhu D J, Liu Q, Xue L, Jiang H. Org. Lett., 2013, 15:2002.
[92] Cheng G H, Fan J L, Sun W, Cao J F, Hu C, Peng X J. Chem. Commun., 2014, 50:1018.
[93] Goswami S, Manna A, Paul S, Quah C K, Fun H K. Chem. Commun., 2013, 49:11656.
[94] Fan J L, Mu H Y, Zhu H, Wang J Y, Peng X J. Analyst, 2015, 140:4594.
[95] Li J W, Yin C X, Huo F J, Xiong K M, Chao J B, Zhang Y B. Sens. Actuators, B 2016, 231:547.
[96] Pang L F, Zhou Y M, Gao W L, Song H H, Wang X, Wang Y. RSC Adv., 2016, 6:105795.
[97] Chen X Q, Wang X C, Wang S J, Shi W, Wang K, Ma H M. Chem. Eur. J., 2008, 14:4719.
[98] Hou J, Wu M, Li K, Yang J, Yu K, Xie Y, Yu X. Chem. Commun., 2014, 50:8640.
[99] Long L L, Zhang D D, Li X F, Zhang J F, Zhang C, Zhou L P. Anal. Chim. Acta, 2013, 775:100.
[100] Cao L Y, Zhang R, Zhang W Z, Du Z B, Liu C J, Ye Z Q, Song B, Yuan J L. Biomaterials, 2015, 68:21.
[101] Yuan L, Lin W Y, Xie Y N, Chen B, Song J Z. Chem. Eur. J., 2012, 18:2700.
[102] Zhang Y R, Zhao Z M, Miao J Y, Zhao B X. Sens. Actuators, B 2016, 229:408.
[103] Zhang Y R, Meng N, Miao J Y, Zhao B X. Chem. Eur. J., 2015, 21:19058.
[104] Lou X D, Zhang Y, Li Q Q, Qin J G, Li Z. Chem. Commun., 2011, 47:3189.
[105] Huo F J, Zhang J J, Yang Y T, Chao J B, Yin C X, Zhang Y B, Chen T G. Sens. Actuators, B, 2012, 44:166.
[106] Zhu H, Fan J L, Wang J Y, Mu H Y, Peng X J. J. Am. Chem. Soc., 2014, 136:12820.
[107] Fan J L, Mu H Y, Zhu H, Du J J, Jiang N, Wang J Y, Peng X J. Ind. Eng. Chem. Res., 2015, 54:8842.
[108] Zhou Y, Li J Y, Chu K H, Liu K, Yao C, Li J Y. Chem. Commun., 2012, 48:4677.
[109] Chen W C, Venkatesan P, Wu S P. Anal. Chim. Acta, 2015, 882:68.
[110] Huang Y, Zhang P S, Gao M, Zeng F, Qin A J, Wu S Z, Tang B Z. Chem. Commun., 2016, 52:7288.
[1] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655-682.
[2] 王芷铉, 郑少奎. 选择性离子吸附原理与材料制备[J]. 化学进展, 2023, 35(5): 780-793.
[3] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[4] 张荡, 王曦, 王磊. 生物酶驱动的微纳米马达在生物医学领域的应用[J]. 化学进展, 2022, 34(9): 2035-2050.
[5] 赖燕琴, 谢振达, 付曼琳, 陈暄, 周戚, 胡金锋. 基于1,8-萘酰亚胺的多分析物荧光探针的构建和应用[J]. 化学进展, 2022, 34(9): 2024-2034.
[6] 李立清, 郑明豪, 江丹丹, 曹舒心, 刘昆明, 刘晋彪. 基于邻苯二胺氧化反应的生物分子比色/荧光探针[J]. 化学进展, 2022, 34(8): 1815-1830.
[7] 周宇航, 丁莎, 夏勇, 刘跃军. 荧光探针在半胱氨酸检测的应用[J]. 化学进展, 2022, 34(8): 1831-1862.
[8] 陆峰, 赵婷, 孙晓军, 范曲立, 黄维. 近红外二区发光稀土纳米材料的设计及生物成像应用[J]. 化学进展, 2022, 34(6): 1348-1358.
[9] 颜范勇, 臧悦言, 章宇扬, 李想, 王瑞杰, 卢贞彤. 检测谷胱甘肽的荧光探针[J]. 化学进展, 2022, 34(5): 1136-1152.
[10] 赵惠, 胡文博, 范曲立. 双光子荧光探针在生物传感中的应用[J]. 化学进展, 2022, 34(4): 815-823.
[11] 王楠, 周宇齐, 姜子叶, 吕田钰, 林进, 宋洲, 朱丽华. 还原-氧化协同降解全/多卤代有机污染物[J]. 化学进展, 2022, 34(12): 2667-2685.
[12] 漆晨阳, 涂晶. 无抗生素纳米抗菌剂:现状、挑战与展望[J]. 化学进展, 2022, 34(11): 2540-2560.
[13] 郭玲香, 李菊平, 刘志洋, 李全. 聚集诱导发光型光敏剂用于线粒体靶向光动力治疗[J]. 化学进展, 2022, 34(11): 2489-2502.
[14] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
[15] 李斌, 付艳艳, 程建功. 检测有机磷神经毒剂及模拟物的荧光探针[J]. 化学进展, 2021, 33(9): 1461-1472.
阅读次数
全文


摘要

识别次氯酸的荧光探针