English
新闻公告
More
化学进展 2012, Vol. 24 Issue (04): 616-627 前一篇   后一篇

• 综述与评论 •

纳米材料电化学与生物传感器--有机微污染物检测新途径

尉艳1,2,3, 刘中刚3, 高超3, 王伦2, 刘锦淮3, 黄行九3   

  1. 1. 皖南医学院化学教研室 芜湖 24100;
    2. 安徽师范大学化学与材料科学学院 芜湖 241000;
    3. 中国科学院合肥物质科学研究院智能机械研究所 合肥 230031
  • 收稿日期:2011-08-01 修回日期:2011-10-01 出版日期:2012-04-24 发布日期:2012-02-08
  • 基金资助:

    国家重点基础研究发展计划(973)项目(No.2011CB933700)、国家自然科学基金青年基金项目(No.21105073);中国科学院“引进海外杰出人才”百人计划资助

Electrochemical Sensors and Biosensors Based on Nanomaterials: A New Approach for Detection of Organic Micropollutants

Wei Yan1,2,3, Liu Zhonggang3, Gao Chao3, Wang Lun2, Liu Jinhuai3, Huang Xingjiu3   

  1. 1. Department of Chemistry, Wannan Medical College, Wuhu 24100;
    2. College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China;
    3. Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
  • Received:2011-08-01 Revised:2011-10-01 Online:2012-04-24 Published:2012-02-08
本文介绍了近年来纳米材料电化学与生物传感器在有机微污染物检测中的研究现状,分析了这些传感器中纳米材料修饰电极的特点,重点阐述了纳米材料在有机微污染物检测中的重要作用,列举了一些纳米材料电化学与生物传感器在有机微污染物检测中的应用。最后对纳米材料电化学与生物传感器用于有机微污染物的检测研究进行了简要评述和展望。
The presence of organic micropollutants in an aquatic ecosystem impacts directly or indirectly to biota and human being, which results in an increasing demand for the detection of organic micropollutants. In this review we examine recent development and current status of electrochemical detection of organic micropullutants using electrochemical sensors and biosensors based on nanomaterials, and discuss the sensing principles of the nanomaterials modified electrodes in these sensors. Emphasis is given to the important effect of related nanomaterials on the detection of organic micropullutants. Finally, key challenges and opportunities on the directions toward future development are outlined.
Contents
1 Introduction
2 Organophosphate and carbamate pesticides
2.1 Detection by electrochemical enzyme biosensors based on nanomaterials
2.2 Detection by electrochemical non-enzyme sensors based on nanomaterials
3 Phenolic compounds
3.1 Detection by electrochemical enzyme biosensors based on nanomaterials
3.2 Detection by electrochemical non-enzyme sensors based on nanomaterials
4 Nitroaromatic compounds
5 Other targets of organic micropollutants
6 Conclusions and outlook

中图分类号: 

()
[1] Liu G D, Lin Y H. Anal. Chem., 2005, 77: 5894-5901
[2] Juhasz A L, Naidu R. Int. Biodeter. Biodegr., 2000, 45: 57-88
[3] Wang C P, Lin M H, Liu Y J, Lei H T. Electrochim. Acta, 2011, 56: 1988-1994
[4] Matthews J, Zacharewski T. Toxicol. Sci., 2000, 53: 326-339
[5] Espinosa M, Atanasov P, Wilkins E. Electroanalysis, 1999, 11: 1055-1062
[6] Palchetti I, Cagnini A, DelCarlo M, Coppi C, Mascini M, Turner A P F. Anal. Chim. Acta, 1997, 337: 315-321
[7] Liu Y, Yu Y Y, Yang Q Y, Qu Y H, Liu Y M, Shi G Y, Jin L T. Sens. Actuator B-Chem., 2008, 131: 432-438
[8] Brinkman U A T. Chromatographia, 1997, 45: 445-449
[9] Jauregui O, Galceran M T. Anal. Chim. Acta, 1997, 340: 191-199
[10] Orejuela E, Silva M. Analyst, 2002, 127: 1433-1439
[11] Liu Y, Mills R C, Boncella J M, Schanze K S. Langmuir, 2001, 17: 7452-7455
[12] Sohn H, Sailor M J, Magde D, Trogler W C. J. Am. Chem. Soc., 2003, 125: 3821-3830
[13] Poerschmann J, Zhang Z Y, Kopinke F D, Pawliszyn J. Anal. Chem., 1997, 69: 597-600
[14] Chen P S, Huang S D. Talanta, 2006, 69: 669-675
[15] Qu Y H, Min H, Wei Y Y, Xiao F, Shi G Y, Li X H, Jin L T. Talanta, 2008, 76: 758-762
[16] Filanovsky B, Markovsky B, Bourenko T, Perkas N, Persky R, Gedanken A, Aurbach D. Adv. Funct. Mater., 2007, 17: 1487-1492
[17] Du D, Chen S, Cai J, Zhang A. Biosens. Bioelectron., 2007, 23: 130-134
[18] Gong J M, Wang L Y, Miao X J, Zhang L Z. Electrochem. Commun., 2010, 12: 1658-1661
[19] Su S, He Y, Zhang M L, Yang K, Song S P, Zhang X H, Fan C H, Lee S T. Appl. Phys. Lett., 2008, 93: art. no. 023113
[20] Ivanov A N, Younusov R R, Evtugyn G A, Arduini F, Moscone D, Palleschi G. Talanta, 2011, 85: 216-221
[21] Liu Y X, Lan D, Wei W Z. J. Electroanal. Chem., 2009, 637: 1-5
[22] Hrapovic S, Majid E, Liu Y, Male K, Luong J H T. Anal. Chem., 2006, 78: 5504-5512
[23] Zhang H X, Cao A M, Hu J S, Wan L J, Lee S T. Anal. Chem., 2006, 78: 1967-1971
[24] Arribas A S, Moreno M, Bermejo E, Perez J A, Roman V, Zapardiel A, Chicharro M. Electroanalysis, 2011, 23: 237-244
[25] Burda C, Chen X B, Narayanan R, El-Sayed M A. Chem. Rev., 2005, 105: 1025-1102
[26] Daniel M C, Astruc D. Chem. Rev., 2004, 104: 293-346
[27] Kandimalla V B, Ju H X. Chem. Eur. J., 2006, 12: 1074-1080
[28] Du D, Chen S Z, Cai J, Zhang A D. Talanta, 2008, 74: 766-772
[29] Du D, Ding J W, Cai J, Zhang A D. Sens. Actuator. B-Chem., 2007, 127: 317-322
[30] Du D, Ding J W, Tao Y, Chen X. Sens. Actuator. B-Chem., 2008, 134: 908-912
[31] Gong J M, Wang L Y, Zhang L Z. Biosens. Bioelectron., 2009, 24: 2285-2288
[32] Yin H S, Ai S Y, Xu J, Shi W J, Zhu L S. J. Electroanal. Chem., 2009, 637: 21-27
[33] Upadhyay S, Rao G R, Sharma M K, Bhattacharya B K, Rao V K, Vijayaraghavan R. Biosens. Bioelectron., 2009, 25: 832-838
[34] Baughman R H, Zakhidov A A, de Heer W A. Science, 2002, 297: 787-792
[35] Du D, Cai J, Song D D, Zhang A D. J. Appl. Electrochem., 2007, 37: 893-898
[36] Du D, Huang X, Cai J, Zhang A. Sens. Actuator. B-Chem., 2007, 127: 531-535
[37] Du D, Wang M H, Cai J, Tao Y, Tu H Y, Zhang A D. Analyst, 2008, 133: 1790-1795
[38] Du D, Wang M H, Cai J, Zhang A D. Sens. Actuator. B-Chem., 2010, 146: 337-341
[39] Du D, Ye X X, Cai J, Liu J A, Zhang A D. Biosens. Bioelectron., 2010, 25: 2503-2508
[40] Zamfir L G, Rotariu L, Bala C. Biosens. Bioelectron., 2011, 26: 3692-3695
[41] Liu G D, Lin Y H. Anal. Chem., 2006, 78: 835-843
[42] Firdoz S, Ma F, Yue X L, Dai Z F, Kumar A, Jiang B. Talanta, 2010, 83: 269-273
[43] Viswanathan S, Radecka H, Radecki J. Biosens. Bioelectron., 2009, 24: 2772-2777
[44] Somerset V S, Klink M J, Sekota M M C, Baker P G L, Iwuoha E I. Anal. Lett., 2006, 39: 1683-1698
[45] Jha N, Ramaprabhu S. Nanoscale, 2010, 2: 806-810
[46] Du D, Wang M H, Cai J, Qin Y H, Zhang A D. Sens. Actuator. B-Chem., 2010, 143: 524-529
[47] Qu Y H, Sun Q, Xiao F, Shi G Y, Jin L T. Bioelectrochemistry, 2010, 77: 139-144
[48] Ozoemena K I, Zhao Z X, Nyokong T. Electrochem. Commun., 2005, 7: 679-684
[49] Nyokong T, Vilakazi S. Talanta, 2003, 61: 27-35
[50] Lin Y H, Lu F, Wang J. Electroanalysis, 2004, 16: 145-149
[51] Deo R P, Wang J, Block I, Mulchandani A, Joshi K A, Trojanowicz M, Scholz F, Chen W, Lin Y H. Anal. Chim. Acta, 2005, 530: 185-189
[52] Choi B G, Park H, Park T J, Kim D H, Lee S Y, Hong W H. Electrochem. Commun., 2009, 11: 672-675
[53] Ion A C, Ion I, Culetu A, Gherase D, Moldovan C A, Iosub R, Dinescu A. Mat. Sci. Eng. C-Mater., 2010, 30: 817-821
[54] Wu S, Zhang L L, Qi L, Tao S Y, Lan X Q, Liu Z G, Meng C G. Biosens. Bioelectron., 2011, 26: 2864-2869
[55] Wang K, Liu Q, Dai L N, Yan J J, Ju C, Qiu B J, Wu X Y. Anal. Chim. Acta, 2011, 695: 84-88
[56] Kang T F, Wang F, Lu L P, Zhang Y, Liu T S. Sens. Actuator. B-Chem., 2010, 145: 104-109
[57] Kumaravel A, Chandrasekaran M. J. Electroanal. Chem., 2010, 638: 231-235
[58] Li C Y, Wang Z G, Zhan G Q. Colloid. Surface B, 2011, 82: 40-45
[59] Xie C G, Li H F, Li S Q, Wu J, Zhang Z P. Anal. Chem., 2010, 82: 241-249
[60] Du D, Ye X, Zhang J, Zeng Y, Tu H, Zhang A, Liu D. Electrochem. Commun., 2008, 10: 686-690
[61] Tan X H, Li B H, Zhan G Q, Li C Y. Electroanalysis, 2010, 22: 151-154
[62] Zhou J H, Deng C Y, Si S H, Wang S E. Microchim. Acta, 2011, 172: 207-215
[63] Wang M, Li Z Y. Sens. Actuator. B-Chem., 2008, 133: 607-612
[64] Li C Y, Wang C F, Ma Y, Hu S S. Microchim. Acta, 2004, 148: 27-33
[65] Kumaravel A, Chandrasekaran M. J. Electroanal. Chem., 2011, 650: 163-170
[66] Zhang Y, Kang T F, Wan Y W, Chen S Y. Microchim. Acta, 2009, 165: 307-311
[67] Huang B A, Zhang W D, Chen C H, Yu Y X. Microchim. Acta, 2010, 171: 57-62
[68] Fan S S, Xiao F, Liu L Q, Zhao F Q, Zeng B Z. Sensor. Actuat. B-Chem., 2008, 132: 34-39
[69] Siswana M P, Ozoemena K I, Nyokong T. Electrochim. Acta, 2006, 52: 114-122
[70] Siswana M P, Ozoemena K I, Geraldo D A, Nyokong T. J. Solid State Electr., 2010, 14: 1351-1358
[71] Moraes F C, Mascaro L H, Machado S A S, Brett C M A. Talanta, 2009, 79: 1406-1411
[72] Myers M, Cooper J, Pejcic B, Baker M, Raguse B, Wieczorek L. Sens. Actuator. B-Chem., 2010, 155: 154-158
[73] Liu S Q, Yu J H, Ju H X. J. Electroanal. Chem., 2003, 540: 61-67
[74] Li Y F, Liu Z M, Liu Y L, Yang Y H, Shen G L, Yu R Q. Anal. Biochem., 2006, 349: 33-40
[75] Zhao Q, Guan L H, Gu Z N, Zhuang Q K. Electroanalysis, 2005, 17: 85-88
[76] Zhao J W, Wu D H, Zhi J F. Bioelectrochemistry, 2009, 75: 44-49
[77] Kafi A K M, Chen A C. Talanta, 2009, 79: 97-102
[78] Luo X L, Xu J J, Zhang Q, Yang G J, Chen H Y. Biosens. Bioelectron., 2005, 21: 190-196
[79] Su L, Mao L Q. Talanta, 2006, 70: 68-74
[80] Ndlovu T, Arotiba O A, Krause R W, Mamba B B. Int. J. Electrochem. Soc., 2010, 5: 1179-1186
[81] Chauke V P, Chidawanyika W, Nyokong T. Electroanalysis, 2011, 23: 487-496
[82] Tzang C H, Li C W, Zhao J L, Yang M S. Anal. Lett., 2005, 38: 1735-1746
[83] Wang J, Deo R P, Musameh M. Electroanalysis, 2003, 15: 1830-1834
[84] Liu X H, Ding Z, He Y H, Xue Z H, Zhao X P, Lu X Q. Colloid Surface B, 2010, 79: 27-32
[85] Phanthong C, Somasundrum M. Electroanalysis, 2008, 20: 1024-1027
[86] Wang X G, Wu Q S, Ding Y P. Electroanalysis, 2006, 18: 517-520
[87] Tu X M, Yan L S, Luo X B, Luo S L, Xie Q J. Electroanalysis, 2009, 21: 2491-2494
[88] Moghaddam A B, Ganjali M R, Dinarvand R, Razavi T, Riahi S, Rezaei-Zarchi S, Norouzi P. Mat. Sci. Eng. C-Bio. S., 2009, 29: 187-192
[89] Wu Y H. Sensor. Actuat. B-Chem., 2009, 137: 180-184
[90] Maduraiveeran G, Ramaraj R. Anal. Chem., 2009, 81: 7552-7560
[91] Wang F, Wang W B, Liu B H, Wang Z Y, Zhang Z P. Talanta, 2009, 79: 376-382
[92] Wiyaratn W, Hrapovic S, Liu Y L, Surareungchai W, Luong J H T. Anal. Chem., 2005, 77: 5742-5749
[93] Dai H, Xu H F, Wu X P, Lin Y Y, Wei M D, Chen G N. Talanta, 2010, 81: 1461-1466
[94] Kim G Y, Kang M S, Shim J, Moon S H. Sens. Actuator. B-Chem., 2008, 133: 1-4
[95] Zhao G H, Li P Q, Nong F Q, Li M F, Gao J X, Li D M. J. Phys. Chem. C, 2010, 114: 5906-5913
[96] Manisankar P, Sundari P L A, Sasikumar R, Roy D J. Electroanalysis, 2008, 20: 2076-2083
[97] Pedrosa V A, Epur R, Benton J, Overfelt R A, Simonian A L. Sens. Actuator. B-Chem., 2009, 140: 92-97
[98] He J J, Fugetsu B, Tanaka S. J. Electroanal. Chem., 2010, 638: 46-50
[99] Chicharro M, Bermejo E, Moreno M, Sanchez A S, Zapardiel A, Rivas G. Electroanalysis, 2005, 17: 476-482
[100] Siswana M, Ozoemena K I, Nyokong T. Sensors-Basel, 2008, 8: 5096-5105
[101] Chen L J, Zeng G M, Zhang Y, Tang L, Huang D L, Liu C, Pang Y, Luo J. Anal. Biochem., 2010, 407: 172-179
[102] Sun X L, Li Z J, Cai Y, Wei Z L, Fang Y J, Ren G X, Huang Y R. Electrochim. Acta, 2011, 56: 1117-1122
[103] Wei Y, Kong L T, Yang R, Wang L, Liu J H, Huang X J. Chem. Commun., 2011, 5340-5342
[104] Wei Y, Yang R, Li X Z, Wang L, Huang X J. Analyst, 2011, 136: 3997-4002
[105] Wei Y, Kong L T, Yang R, Wang L, Liu J H, Huang X J. Langmuir, 2011, 27: 10295-10301
[1] 刘峻, 叶代勇. 抗病毒涂层[J]. 化学进展, 2023, 35(3): 496-508.
[2] 钟衍裕, 王正运, 刘宏芳. 抗坏血酸电化学传感研究进展[J]. 化学进展, 2023, 35(2): 219-232.
[3] 陆峰, 赵婷, 孙晓军, 范曲立, 黄维. 近红外二区发光稀土纳米材料的设计及生物成像应用[J]. 化学进展, 2022, 34(6): 1348-1358.
[4] 周晋, 陈鹏鹏. 二维纳米材料的改性及其环境污染物治理方面的应用[J]. 化学进展, 2022, 34(6): 1414-1430.
[5] 孙义民, 李厚燊, 陈振宇, 王东, 王展鹏, 肖菲. MXene在电化学传感器中的应用[J]. 化学进展, 2022, 34(2): 259-271.
[6] 李彬, 于颖, 幸国香, 邢金峰, 刘万兴, 张天永. 手性无机纳米材料圆偏振发光的研究进展[J]. 化学进展, 2022, 34(11): 2340-2350.
[7] 郑明心, 谭臻至, 袁金颖. 光响应Janus粒子体系的构建与应用[J]. 化学进展, 2022, 34(11): 2476-2488.
[8] 漆晨阳, 涂晶. 无抗生素纳米抗菌剂:现状、挑战与展望[J]. 化学进展, 2022, 34(11): 2540-2560.
[9] 王嘉莉, 朱凌, 王琛, 雷圣宾, 杨延莲. 循环肿瘤细胞及细胞外囊泡的纳米检测技术[J]. 化学进展, 2022, 34(1): 178-197.
[10] 赵丹, 王昌涛, 苏磊, 张学记. 荧光纳米材料在病原微生物检测中的应用[J]. 化学进展, 2021, 33(9): 1482-1495.
[11] 谢勇, 韩明杰, 徐钰豪, 熊晨雨, 王日, 夏善红. 荧光内滤效应在环境检测领域的应用[J]. 化学进展, 2021, 33(8): 1450-1460.
[12] 程熙萌, 张庆瑞. 功能蛋白纳米材料在环境保护中的应用[J]. 化学进展, 2021, 33(4): 678-688.
[13] 谭莎, 马建中, 宗延. 聚(3,4-乙烯二氧噻吩)∶聚苯乙烯磺酸/无机纳米复合材料的制备及应用[J]. 化学进展, 2021, 33(10): 1841-1855.
[14] 蒋乔, 徐雪卉, 丁宝全. 纳米材料对生物凝聚态的调控[J]. 化学进展, 2020, 32(8): 1128-1139.
[15] 秦瑞轩, 邓果诚, 郑南峰. 金属纳米材料表面配体聚集效应[J]. 化学进展, 2020, 32(8): 1140-1157.