English
新闻公告
More
化学进展 2011, Vol. 23 Issue (12): 2607-2616 前一篇   后一篇

• 综述与评论 •

高效率窄带隙聚合物太阳能电池材料

杨正龙1,2*, 卜弋龙1,2, 陈秋云1,2   

  1. 1. 同济大学材料科学与工程学院 先进土木工程材料教育部重点实验室 上海 20009;
    2. 上海市特殊人工微结构材料与技术重点实验室 上海 200092
  • 收稿日期:2011-05-01 修回日期:2011-06-01 出版日期:2011-12-24 发布日期:2011-09-29
  • 作者简介:e-mail:yangzhenglong@tongji.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 50703029)、中央高校基本科研业务费专项基金(No.0500219145)、上海市青年科技启明星计划(No. 09QA1406300)、同济大学先进土木工程材料教育部重点实验室青年基金(No. 2010104)、上海市金属功能材料重点实验室开放基金(No. 2009106)和国家环境保护公益性行业科研专项项目(No.2012467026)资助

High Efficiency Low Band Gap Conjugated Polymer Materials for Solar Cells

Yang Zhenglong1,2*, Bu Yilong1,2, Chen Qiuyun1,2   

  1. 1. Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai 20009;
    2. Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, Shanghai 200092, China
  • Received:2011-05-01 Revised:2011-06-01 Online:2011-12-24 Published:2011-09-29
太阳能电池能够将太阳能直接转化为电能,是利用太阳能资源的一种非常有效的手段。聚合物太阳能电池因成本低、重量轻、制备方便和可制成柔性器件的优点,已经成为该领域的研究热点之一。基于窄带隙共轭聚合物给体/富勒烯受体复合材料体系制得的太阳能电池的最高转换效率已经达到8.3%,而寻找性能更优异的聚合物给体材料是进一步提高光伏性能的关键因素。本文综述了近几年关于高效率窄带隙聚合物太阳能电池给体材料的研究进展,着重介绍了苯并噻二唑类共聚物、稠环噻吩类共聚物和吡嗪类共聚物等窄带隙聚合物给体材料体系及相应光伏器件的性能,分析了各种材料的优点和不足,并对今后这一领域的发展做了展望。
With the rising costs of fossil fuel generated energy as well as its impending defeat to scarcity, people have begun searching for new ways of generating and producing energy. Solar power is the conversion of sunlight into electricity. It is a very effective means of energy and is practical for everyday use. Polymer solar cells (PSCs) have attracted considerable attention due to their unique advantages, such as low-cost fabrication process, light weight of device, simple process of production, and potential use in flexible devices. Bulk heterojunction polymer solar cells, whose photoactive layer is composed of low band gap conjugated polymer donor materials and soluble fullerene acceptor materials, can greatly optimize the interfacial area between donor and acceptor. By far, this kind of PSCs has obtained a maximum power conversion efficiency of 8.3%. More investigations have been carried out to develop better photovoltaic polymer donor materials in order to improve the power conversion efficiency of PSCs. In this paper, we review the recent progress of low band gap conjugated polymer donor materials for high efficiency polymer solar cells. We put focus on the research progress of benzothiadiazole-, thiophene-, and pyrazine-containing low band gap conjugated polymers as well as their corresponding performance parameters of photovoltaic devices. The advantages and disadvantages of various low band gap conjugated polymers materials are also analyzed. Finally, the advances of low band gap conjugated polymers in high efficiency PSCs applications are prospected. Contents 1 Introduction 2 Benzothiadiazole-containing low band gap conjugated polymers as electron donor materials 3 Thiophene-containing low band gap conjugated polymers as electron donor materials 4 Pyrazine-containing low band gap conjugated polymers as electron donor materials 5 Other low band gap conjugated polymers as electron donor materials 6 Summary and outlook

中图分类号: 

()
[1] Tang C W. Appl.Phys.Lett., 1986, 48: 183-185
[2] Sariciftci N S, Smilowitz L, Heeger A J, Wudl F. Science, 1992, 258: 1474-1476
[3] Yu G, Gao J, Hummelen J C, Heeger A J. Science, 1995, 270: 1789-1791
[4] Scharber M C, Wuhlbacher D, Koppe M, Denk P, Waldauf C, Heeger A J, Brabec C L. Adv. Mater., 2006, 18: 789-794
[5] Alam M M, Jenekhe S A. Chem. Mater., 2004, 16: 4647-4654
[6] Li G, Shrotriya V, Huang J S, Yao Y, Moriarty T, Emery K, Yang Y. Nature Mater., 2005, 4: 864-868
[7] Hou J H, Tan Z A, Yan Y, He Y J, Yang C H, Li Y F. J. Am. Chem. Soc., 2006, 128: 4911-4916
[8] Heremans P, Cheyns D, Rand B P. Acc. Chem. Res., 2009, 42: 1740-1747
[9] Roncali J. Chem. Rev., 1997, 97: 173-205
[10] Huang W, Meng H, Yu W L, Pei J, Chen Z K, Lai Y H. Macromolecules, 1999, 32: 118-126
[11] 王洪宇(Wang H Y),冯嘉春(Feng J C),姜鸿基(Jiang H J),黄维(Huang W),韦玮(Wei W). 化学进展(Progress in Chemistry), 2007, 19(2/3): 276-282
[12] Wang L H, Chen Z K, Xiao Y, Kang E T, Huang W. Macromol. Rapid Commun., 2000, 11: 897-900
[13] Lee K, Sotzing G A. Macromolecules, 2001, 34: 5746-5747
[14] Slooff L H, Veenstra S C, Kroon J M, Moet D J D, Sweelssen J, Koetse M M. Appl. Phys. Lett., 2007, 90: art. no. 143506
[15] Wang E, Wang L, Lan L, Luo C, Zhuang W L, Peng J B, Cao Y. Appl. Phys. Lett., 2008, 92: art. no. 033307
[16] Blouin N, Michaud A, Leclerc M A. Adv. Mater., 2007, 19: 2295-2300
[17] Lu J, Liang F, Drolet N, Ding J F, Tao Y, Movileanu R. Chem. Commun., 2008, 5315-5317
[18] Xia Y J, Su X H, He Z C, Ren X, Wu H B, Cao Y, Fan D W. Macromol. Rapid Commun., 2010, 31: 1287-1292
[19] Park S H, Roy A, Beaupre S, Cho S, Coates N, Moon J S, Moses D, Leclerc M, Lee K, Heeger A J. Nature Photonics, 2009, 3: 297-302
[20] Zhou E, Nakamura M, Nishizawa T, Zhang Y, Wei Q S, Tajima K, Yang C H, Hashimoto K. Macromolecules, 2008, 41: 8302-8305
[21] Yu C Y, Chen C P, Chan S H, Hwang G W, Ting C. Chem. Mater., 2009, 21: 3262-3269
[22] Chen C P, Chan S H, Chao T C, Ting C, Ko B T. J. Am. Chem. Soc., 2008, 130: 12828-12833
[23] Chan S H, Hsiao Y S, Hung L I, Hwang G W, Chen H L, Ting C, Chen C P. Macromolecules, 2010, 43: 3399-3405
[24] Hwang I W, Soci C, Moses D, Zhu Z G, Waller D, Gaudiana R, Brabec C J, Heeger A J. Adv. Mater., 2007, 19: 2307-2312
[25] Morana M, Wegscheider M, Bonanni A, Kopidakis N, Shaheen N, Scharber M, Zhu Z G, Waller D, Gaudiana R, Brabec C. Adv. Funct. Mater., 2008, 18: 1757-1766
[26] Peet J, Kim J Y, Coates N E, Ma W L, Moses D, Heeger A J, Bazan G C. Nature Mater., 2007, 6: 497-500
[27] Hou J, Chen H Y, Zhang S, Li G, Yang Y. J. Am. Chem. Soc., 2008, 130: 16144-16145
[28] Coffin R C, Peet J, Rogers J, Bazan G C. Nature Chem., 2009, 1: 657-661
[29] Price S C, Stuart A C, You W. Macromolecules, 2010, 43: 4609-4612
[30] Lim B, Jo J, Khim D, Jeong H G, Yu B K, Kim J, Kim D Y. Org. Electro., 2010, 11: 1772-1778
[31] He Y, Wu W, Zhao G J, Liu Y Q, Li Y F. Macromolecules, 2008, 41: 9760-9766
[32] Mcculloch I, Heeney M, Bailey C, Genevicius K, Macdonald I, Shkunov M, Sparrowe D, Tierney S, Wagner R, Zhang W M, Chabinyc M L, Kline R J, Mcgehee M D, Toney M F. Nature Mater., 2006, 5: 328-333
[33] Liang Y Y, Xiao S, Feng D, Yu L P. J. Phys. Chem. C, 2008, 112: 7866-7871
[34] Liang Y Y, Feng D, Guo J, Szarko J M, Ray C, Chen L X, Yu L P. Macromolecules, 2009, 42: 1091-1098
[35] Liang Y Y, Wu Y, Feng D, Tsai S T, Son H J, Li G, Yu L P. J. Am. Chem. Soc., 2009, 131: 56-57
[36] Liang Y Y, Feng D Q, Wu Y, Tsai S T, Li G, Ray C, Yu L P. J. Am. Chem. Soc., 2009, 131: 7792-7799
[37] Liang Y Y, Xu Z, Xia J B, Tsai S, WuY, Li G, Ray C, Yu L P. Adv. Mater., 2010, 22: E135-E138
[38] Sonmez G, Sonmez H B, Shen C K F, Jost R W, Rubin Y, Wudl F. Macromolecules, 2005, 38: 669-675
[39] Bundgaard E, Krebs F C. Sol. Energy Mater. Sol. Cells, 2007, 91: 954-985
[40] Mammo W, Admassiea S, Gadisab A, Zhang F L, Inganas O, Andersson M R. Sol. Energy Mater. Sol. Cells, 2007, 91: 1010-1018
[41] Zhang F, Perzon E, Wang X, Mammo W, Andersson M R, Inganas O. Adv. Funct. Mater., 2005, 15: 745-750
[42] Zhang F, Mammo W, Andersson L M, Admassie S, Andersson M R, Inganas O. Adv. Mater., 2006, 18: 2169-2173
[43] Ashraf R S, Shahid M, Klemm E, Al-Ibrahim M, Sensfusset S. Macromol. Rapid Commun., 2006, 27: 1454-1459
[44] Gadisa A, Mammo W, Andersson L M, Admassie S, Zhang F L, Andersson M R, Inganas O. Adv. Funct. Mater., 2007, 17: 3836-3842
[45] Kitazawa D, Watanabe N, Yamamoto S, Tsukamoto J. J. Photopolym. Sci. Tec., 2010, 23: 293-296
[46] Kitazawa D, Watanabe N, Yamamoto S, Tsukamoto J. Appl. Phys. Lett., 2009, 95: art. no. 083303
[47] Zhao W, Cai W Z, Xu R X, Yang W, Gong X O, Wu H B, Cao Y. Polymer, 2010, 51: 3196-3202
[48] Wienk M M, Turbiez M, Gilot J, Janssen R A J. Adv. Mater., 2008, 20: 2556-2560
[49] Huo L J, Hou J H, Chen H Y, Zhang S Q, Jiang Y, Chen T L, Yang Y. Macromolecules, 2009, 42: 6564-6571
[50] Zhang Y, Hau S K, Yip H L, Sun Y, Acton O, Jen A K Y. Chem. Mater., 2010, 22: 2696-2698
[51] Chen G Y, Lan S C, Lin P Y, Chu C W, Wei K H. J. Polym. Sci. Pol. Chem., 2010, 48: 4456-4464
[52] Huang F, Chen K S, Yip H L, Hau S K, Acton O, Zhang Y, Luo J D, Jen A K Y. J. Am. Chem. Soc., 2009, 131: 13886-13887
[53] Cai W Z, Gong X, Cao Y. Sol. Energy Mater. Sol. Cells, 2010, 94: 114-127
[54] Kim J Y, Lee K, Coates N E, Moses D, Nguyen T Q, Dante M, Heeger A J. Science, 2007, 317: 222-225
[55] Ameri T, Dennler G, Lungenschmied C, Brabec C J. Energy Environ. Sci., 2009, 2: 347-363
[56] Sista S, Hong Z R, Park M H, Xu Z, Yang Y. Adv. Mater., 2010, 22: E77-E80
[57] Sakai J, Kawano K, Yamanari T, Taima T, Yoshida T, Fujii A, Ozaki M. Sol. Energy Mater. Sol. Cells, 2010, 94: 376-380
[1] 张力红, 于庆才, 万俊华*. 基于噻咯的聚合物给体光伏材料[J]. 化学进展, 2013, 25(05): 752-760.
[2] 王维, 周铭露, 梁露英, 王文*, 凌启淡*. 多功能可交联材料在聚合物太阳能电池中的应用[J]. 化学进展, 2013, 25(0203): 350-362.