English
新闻公告
More
化学进展 2011, Vol. 23 Issue (10): 2103-2112 前一篇   后一篇

• 综述与评论 •

基于仿生膜的功能化单纳米通道在分析化学中的应用

郭志军1,2, 王家海2*, 胡耀辉1*, 汪尔康2*   

  1. 1. 吉林农业大学食品科学与工程学院 长春 130118;
    2. 中国科学院长春应用化学研究所 电分析化学国家重点实验室 长春 130022
  • 收稿日期:2010-12-01 修回日期:2011-03-01 出版日期:2011-10-24 发布日期:2011-09-15
  • 作者简介:e-mail:jhwang@ciac.jl.cn; huyaohui@vip.163.com; ekwang@ciac.jl.cn
  • 基金资助:

    国家自然科学基金项目(No.20905056,20735003)和国家重点基础研究发展计划( 973)项目(No.2009CB930100,2010CB933600)资助

Application of Biomimetic Nanopore Fabricated in Self-Supported Membrane in Analytical Chemistry

Guo Zhijun1,2, Wang Jiahai2*, Hu Yaohui1*, Wang Erkang2*   

  1. 1. College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China;
    2. State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
  • Received:2010-12-01 Revised:2011-03-01 Online:2011-10-24 Published:2011-09-15

灵感来源于蛋白质离子通道的仿生功能化单纳米通道,已逐渐成为一种成熟的单分子检测技术和离子整流器。功能化纳米通道包括两种:基因改造的蛋白质纳米通道和固体加工的纳米通道。常用的固体纳米通道有三种:在纳米氮化硅或石墨烯上用聚焦离子束(FIB)或电子束(FEB)轰击得到的纳米通道,化学腐蚀聚合物薄膜中的重金属离子轨迹得到的锥形纳米通道和拉制毛细管或激光刻蚀得到的玻璃纳米孔。相对于蛋白质纳米通道,固态的人工纳米通道具有更优越的机械稳定性,并可用于各种功能基团的修饰。经过近十年的发展,包括蛋白质纳米通道在内的各种仿生的纳米通道已广泛用于对小分子、蛋白质和聚合物等其他一些对象的定性和定量检测。本综述详细介绍了近年来国内外该领域的发展,并对未来的发展方向作了简要的展望。

In the past ten years, biomimetic single nanopores as single-molecule analytical nanodevices have been well studied, which was facilitated by controllable fabrication and engineering of various nanopores. The current used single nanopores originating from protein ion channels include two kinds of systems: gene engineered protein nanopore and solid-state nanopore. In comparison with gene engineered protein nanopore, solid-state nanopores have higher mechanical stability and can be easily functionalized with tremendous amount of chemical groups. Two methods including resistive-pulse sensor and ionic-current rectification are developed for nanopore technology, which are widely used for single molecule analysis and ionic-current modulation. FIB(focused ion beam) fabricated nanopore in SiN, SiO2 and graphene film is mainly used as resistive-pulse sensor.Conical-shaped nanopore made in tracked polymer membrane as well as with quartz capillary glass can be used as both resistive-pulse sensor and ionic-current rectifier. In the review, we comprehensively describe the recent progress and the challenging problems in this field.

Contents
1 Introduction
2 Application of protein nanopore
3 Application of FIB fabricated solid-state nanopore
4 Application of track-etched nanopore
5 Application of glass nanopore
6 Conclusions and outlook

中图分类号: 

()

[1] Doyle D A, Cabral J M, Pfuetzner R A, Kuo A, Gulbis J M, Cohen S L, Chait B T, MacKinnon R. Science, 1998, 280: 69-77
[2] Li J, Stein D, McMullan C, Branton D, Aziz M J, Golovchenko J A. Nature, 2001, 412: 166-169
[3] Spinney P S, Howitt D G, Smith R L, Collins S D. Nanotechnology, 2010, 21: art. no. 375301
[4] An R, Uram J D, Yusko E C, Ke K, Mayer M, Hunt A J. Opt. Lett., 2008, 33: 1153-1155
[5] Siwy Z, Dobrev D, Neumann R, Trautmann C, Voss K. Appl. Phys. A: Mater. Sci. Process., 2003, 76: 781-785
[6] Sexton L T, Horne L P, Martin C R. Mol. BioSyst., 2007, 3: 667-685
[7] Jung Y, Bayley H, Movileanu L. J. Am. Chem. Soc., 2006, 128: 15332-15340
[8] Siwy Z S. Adv. Funct. Mater., 2006, 16: 735-746
[9] Branton D, Deamer D W, Marziali A, Bayley H, Benner S A, Butler T, Di Ventra M, Garaj S, Hibbs A, Huang X H, Jovanovich S B, Krstic P S, Lindsay S, Ling X S S, Mastrangelo C H, Meller A, Oliver J S, Pershin Y V, Ramsey J M, Riehn R, Soni G V, Tabard-Cossa V, Wanunu M, Wiggin M, Schloss J A. Nat. Biotechnol., 2008, 26: 1146-1153
[10] Deamer D W, Branton D. Acc. Chem. Res., 2002, 35: 817-825
[11] Ravin N V. Appl. Biochem. Microbio., 2010, 46: 663-670
[12] Quiles-Melero I, Garcia-Rodriguez J, Romero-Gomez M P, Gomez-Sanchez P, Mingorance J. Eur. J. Clin. Microbio. Infect. Dis., 2011, 30: 21-24
[13] Butler T Z, Pavlenok M, Derrington I M, Niederweis M, Gundlach J H. Proc. Natl. Acad. Sci. USA, 2008, 105: 20647-20652
[14] Wendell D, Jing P, Geng J, Subramaniam V, Lee T J, Montemagno C, Guo P X. Nat. Nanotechnol., 2009, 4: 765-772
[15] Kang X F, Cheley S, Rice-Ficht A C, Bayley H. J. Am. Chem. Soc., 2007, 129: 4701-4705
[16] Clarke J, Wu H C, Jayasinghe L, Patel A, Reid S, Bayley H. Nat. Nanotechnol., 2009, 4: 265-270
[17] Schadt E E, Turner S, Kasarskis A. Hum. Mol. Genet., 2010, 19: R227-R240
[18] Derrington I M, Butler T Z, Collins M D, Manrao E, Pavlenok M, Niederweis M, Gundlach J H. Proc. Natl. Acad. Sci. USA, 2010, 107: 16060-16065
[19] White R J, Ervin E N, Yang T, Chen X, Daniel S, Cremer P S, White H S. J. Am. Chem. Soc., 2007, 129: 11766-11775
[20] Olasagasti F, Lieberman K R, Benner S, Cherf G M, Dahl J M, Deamer D W, Akeson M. Nat. Nanotechnol., 2010, 5: 798-806
[21] Zhao Q T, de Zoysa R S S, Wang D Q, Jayawardhana D A, Guan X Y. J. Am. Chem. Soc., 2009, 131: 6324-6325
[22] Banerjee A, Mikhailova E, Cheley S, Gu L Q, Montoya M, Nagaoka Y, Gouaux E, Bayley H. Proc. Natl. Acad. Sci. USA, 2010, 107: 8165-8170
[23] Wu H C, Bayley H. J. Am. Chem. Soc., 2008, 130: 6813-6819
[24] Talaga D S, Li J L. J. Am. Chem. Soc., 2009, 131: 9287-9297
[25] Kang X F, Cheley S, Guan X Y, Bayley H. J. Am. Chem. Soc., 2006, 128: 10684-10685
[26] Hurt N, Wang H Y, Akeson M, Lieberman K R. J. Am. Chem. Soc., 2009, 131: 3772-3778
[27] Madampage C A, Andrievskaia O, Lee J S. Anal. Biochem., 2010, 396: 36-41
[28] Hall A R, Scott A, Rotem D, Mehta K K, Bayley H, Dekker C. Nat. Nanotechnol., 2010, 5: 874-877
[29] Smeets R M M, Kowalczyk S W, Hall A R, Dekker N H, Dekker C. Nano Lett., 2009, 9: 3089-3095
[30] Wanunu M, Dadosh T, Ray V, Jin J M, McReynolds L, Drndic M. Nat. Nanotechnol., 2010, 5: 807-814
[31] McNally B, Singer A, Yu Z L, Sun Y J, Weng Z P, Meller A. Nano Lett., 2010, 10: 2237-2244
[32] Garaj S, Hubbard W, Reina A, Kong J, Branton D, Golovchenko J A. Nature, 2010, 467: 190-193
[33] Kleefen A, Pedone D, Grunwald C, Wei R, Firnkes M, Abstreiter G, Rant U, Tampeé R. Nano Lett., 2010, 10: 5080-5087
[34] Ali M, Schiedt B, Healy K, Neumann R, Ensinger A. Nanotechnology, 2008, 19: art. no. 085713
[35] Ali M, Bayer V, Schiedt B, Neumann R, Ensinger W. Nanotechnology, 2008, 19: art. no. 485711
[36] Mara A, Siwy Z, Trautmann C, Wan J, Kamme F. Nano Lett., 2004, 4: 497-501
[37] Ali M, Ramirez P, Mafe S, Neumann R, Ensinger W. ACS Nano, 2009, 3: 603-608
[38] Harrell C C, Siwy Z S, Martin C R. Small, 2006, 2: 194-198
[39] Scopece P, Baker L A, Ugo P, Martin C R. Nanotechnology, 2006, 17: 3951-3956
[40] Martin C R, Siwy Z S. Science, 2007, 317: 331-332
[41] Powell M R, Sullivan M, Vlassiouk I, Constantin D, Sudre O, Martens C C, Eisenberg R S, Siwy Z S. Nat. Nanotechnol., 2008, 3: 51-57
[42] Vlassiouk I, Smirnov S, Siwy Z. Nano Lett., 2008, 8: 1978-1985
[43] Vlassiouk I, Siwy Z S. Nano Lett., 2007, 7: 552-556
[44] Siwy Z S, Powell M R, Petrov A, Kalman E, Trautmann C, Eisenberg R S. Nano Lett., 2006, 6: 1729-1734
[45] Siwy Z S, Powell M R, Kalman E, Astumian R D, Eisenberg R S. Nano Lett., 2006, 6: 473-477
[46] Heins E A, Siwy Z S, Baker L A, Martin C R. Nano Lett., 2005, 5: 1824-1829
[47] Siwy Z, Trofin L, Kohli P, Baker L A, Trautmann C, Martin C R. J. Am. Chem. Soc., 2005, 127: 5000-5001
[48] Siwy Z, Heins E, Harrell C C, Kohli P, Martin C R. J. Am. Chem. Soc., 2004, 126: 10850-10851
[49] He Y, Gillespie D, Boda D, Vlassiouk I, Eisenberg R S, Siwy Z S. J. Am. Chem. Soc., 2009, 131: 5194-5202
[50] Harrell C C, Kohli P, Siwy Z, Martin C R. J. Am. Chem. Soc., 2004, 126: 15646-15647
[51] Gillespie D, Boda D, He Y, Apel P, Siwy Z S. Biophys. J., 2008, 95: 609-619
[52] Kalman E B, Sudre O, Vlassiouk I, Siwy Z S. Anal. Bioanal. Chem., 2009, 394: 413-419
[53] Vlassiouk I, Smirnov S, Siwy Z. ACS Nano, 2008, 2: 1589-1602
[54] Hou X, Dong H, Zhu D B, Jiang L. Small, 2010, 6: 361-365
[55] Xia F, Guo W, Mao Y D, Hou X, Xue J M, Xia H W, Wang L, Song Y L, Ji H, Qi O Y, Wang Y G, Jiang L. J. Am. Chem. Soc., 2008, 130: 8345-8350
[56] Hou X, Guo W, Xia F, Nie F Q, Dong H, Tian Y, Wen L P, Wang L, Cao L X, Yang Y, Xue J M, Song Y L, Wang Y G, Liu D S, Jiang L. J. Am. Chem. Soc., 2009, 131: 7800-7805
[57] Guo W, Xia H W, Xia F, Hou X, Cao L X, Wang L, Xue J M, Zhang G Z, Song Y L, Zhu D B, Wang Y G, Jiang L. Chemphyschem, 2010, 11: 859-864
[58] Kececi K, Sexton L T, Buyukserin F, Martin C R. Nanomedicine, 2008, 3: 787-796
[59] Harrell C C, Choi Y, Horne L P, Baker L A, Siwy Z S, Martin C R. Langmuir, 2006, 22: 10837-10843
[60] Sexton L T, Mukaibo H, Katira P, Hess H, Sherrill S A, Horne L P, Martin C R. J. Am. Chem. Soc., 2010, 132: 6755-6763
[61] Sexton L T, Horne L P, Sherrill S A, Bishop G W, Baker L A, Martin C R. J. Am. Chem. Soc., 2007, 129: 13144-13152
[62] Wang J, Martin C R. Nanomedicine, 2008, 3: 13-20
[63] Ali M, Yameen B, Neumann R, Ensinger W, Knoll W, Azzaroni O. J. Am. Chem. Soc., 2008, 130: 16351-16357
[64] Ali M, Yameen B, Cervera J, Ramirez P, Neumann R, Ensinger W, Knoll W, Azzaroni O. J. Am. Chem. Soc., 2010, 132: 8338-8348
[65] Vlassiouk I, Kozel T R, Siwy Z S. J. Am. Chem. Soc., 2009, 131: 8211-8220
[66] Ding S, Gao C L, Gu L Q. Anal. Chem., 2009, 81: 6649-6655
[67] Ervin E N, White R J, White H S. Anal. Chem., 2009, 81: 533-537
[68] Gao C L, Ding S, Tan Q L, Gu L Q. Anal. Chem., 2009, 81: 80-86
[69] Gyurcsanyi R E, Vigassy T, Pretsch E. Chem. Commun., 2003, 2560-2561
[70] Schibel A E P, Edwards T, Kawano R, Lan W J, White H S. Anal. Chem., 2010, 82: 7259-7266
[71] Shim J H, Kim J, Cha G S, Nam H, White R J, White H S, Brown R B. Anal. Chem., 2007, 79: 3568-3574
[72] Shim J W, Gu L Q. Anal. Chem., 2007, 79: 2207-2213
[73] Umehara S, Karhanek M, Davis R W, Pourmand N. Proc. Natl. Acad. Sci. USA, 2009, 106: 4611-4616
[74] Wang G L, Bohaty A K, Zharov I, White H S. J. Am. Chem. Soc., 2006, 128: 13553-13558
[75] Wang G L, Zhang B, Wayment J R, Harris J M, White H S. J. Am. Chem. Soc., 2006, 128: 7679-7686
[76] White H S, Bund A. Langmuir, 2008, 24: 2212-2218
[77] White H S, Bund A. Langmuir, 2008, 24: 12062-12067
[78] Zhang B, Galusha J, Shiozawa P G, Wang G L, Bergren A J, Jones R M, White R J, Ervin E N, Cauley C C, White H S. Anal. Chem., 2007, 79: 4778-4787
[79] Zhang B, Zhang Y H, White H S. Anal. Chem., 2004, 76: 6229-6238
[80] Zhang B, Zhang Y H, White H S. Anal. Chem., 2006, 78: 477-483
[81] Uram J D, Ke K, Hunt A J, Mayer M. Small, 2006, 2: 967-972
[82] Uram J D, Ke K, Hunt A J, Mayer M. Angew. Chem. Int. Ed., 2006, 45: 2281-2285

[1] 张永, 张辉, 张逸, 高蕾, 卢建臣, 蔡金明. 表面合成异质原子掺杂的石墨烯纳米带[J]. 化学进展, 2023, 35(1): 105-118.
[2] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[3] 姜鸿基, 王美丽, 卢志炜, 叶尚辉, 董晓臣. 石墨烯基人工智能柔性传感器[J]. 化学进展, 2022, 34(5): 1166-1180.
[4] 张辉, 熊玮, 卢建臣, 蔡金明. 超高真空下纳米石墨烯磁性及调控[J]. 化学进展, 2022, 34(3): 557-567.
[5] 向笑笑, 田晓雯, 刘会娥, 陈爽, 朱亚男, 薄玉琴. 石墨烯基气凝胶小球的可控制备[J]. 化学进展, 2021, 33(7): 1092-1099.
[6] 吴磊, 刘利会, 陈淑芬. 基于碳基透明电极的柔性有机电致发光二极管[J]. 化学进展, 2021, 33(5): 802-817.
[7] 朱彬彬, 郑晓慧, 杨光, 曾旭, 邱伟, 徐斌. 氧化石墨烯分离膜机械性能调控[J]. 化学进展, 2021, 33(4): 670-677.
[8] 吕苏叶, 邹亮, 管寿梁, 李红变. 石墨烯在神经电信号检测中的应用[J]. 化学进展, 2021, 33(4): 568-580.
[9] 罗贤升, 邓汉林, 赵江颖, 李志华, 柴春鹏, 黄木华. 多孔氮化石墨烯(C2N)的合成及应用[J]. 化学进展, 2021, 33(3): 355-367.
[10] 祁建磊, 徐琴琴, 孙剑飞, 周丹, 银建中. 石墨烯基单原子催化剂的合成、表征及分析[J]. 化学进展, 2020, 32(5): 505-518.
[11] 龚乐, 杨蓉, 刘瑞, 陈利萍, 燕映霖, 冯祖飞. 石墨烯量子点在储能器件中的应用[J]. 化学进展, 2019, 31(7): 1020-1030.
[12] 刘杰, 曾渊, 张俊, 张海军, 刘江昊. 三维石墨烯基材料的制备、结构与性能[J]. 化学进展, 2019, 31(5): 667-680.
[13] 耿奥博, 钟强, 梅长彤, 王林洁, 徐立杰, 甘露. 湿法改性石墨烯在制备橡胶复合材料中的应用[J]. 化学进展, 2019, 31(5): 738-751.
[14] 王晓娟, 刘真真, 陈奇, 王小强, 黄方. 石墨烯材料与蛋白质的相互作用[J]. 化学进展, 2019, 31(2/3): 236-244.
[15] 鲍长远, 韩家军*, 程瑾宁, 张瑞涛. 石墨烯-聚苯胺类超级电容器复合电极材料[J]. 化学进展, 2018, 30(9): 1349-1363.