English
新闻公告
More
化学进展 2011, Vol. 23 Issue (8): 1644-1656 前一篇   后一篇

• 综述与评论 •

铜纳米材料的制备

李刚, 李小红, 张治军*   

  1. 河南大学特种功能材料教育部重点实验室 开封 475004
  • 收稿日期:2010-11-01 修回日期:2011-03-01 出版日期:2011-08-24 发布日期:2011-07-25
  • 通讯作者: 张治军 E-mail:zhangzhijun@henu.edu.cn
  • 基金资助:

    国家重点基础研究发展计划(973)项目(No.2007CB607606)资助

Preparation Methods of Copper Nanomaterials

Li Gang, Li Xiaohong, Zhang Zhijun*   

  1. Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Kaifeng 475004, China
  • Received:2010-11-01 Revised:2011-03-01 Online:2011-08-24 Published:2011-07-25

纳米铜由于其独特的物理化学性质以及在光学、电子、催化、抗菌、润滑、聚合物填充改性等领域的广泛应用得到了人们越来越多的关注。近年来研究者已经利用多种合成方法制备了不同尺寸和形貌的铜纳米材料。本文综述了目前铜纳米材料的几种常用的制备方法,包括化学还原法、微乳液法、多元醇法、有机前驱体热分解法、电化学法等,评述了这些方法的优缺点。在化学还原法中配体对无机纳米材料的表面修饰起着至关重要的作用,因而我们详细介绍了不同分子配体在铜纳米材料尺寸和形貌控制以及表面功能化等方面的特点和作用。最后结合本课题组在纳米材料制备方面的工作,对铜纳米材料的发展进行了展望。

Copper nanomaterials have received considerable attentions in recent years because of their unique physico-chemical properties and widespread applications in various areas such as optics, electronics, catalysis, antibacterial, lubrication, and fillermodification of polymers and so on. Recently many methods have been exploited for the preparation of copper nanostructures with different sizes and shapes. In this paper, a comprehensive review is presented on the general preparation methods of copper nanomaterials, including chemical reduction method, microemulsion technique, polyol process, organic precurser thermal decomposition method, electrochemical method, etc.. Their advantages and disadvantages are discussed. While selection of proper ligands is critical to the surface-modification of nanomaterials, we give a detailed introduction to the features and functions of various molecular ligands in relation to the control of size and morphology as well as surface functionalization of Cu nanomaterials. Combining with our group work on the preparation of inorganic nanomaterials, the development trends of copper nanomaterials are also proposed.

Contents
1 Introduction
2 Preparation methods of copper nanomaterials
2.1 Chemical reduction method
2.2 Microemulsion technique
2.3 Polyol process
2.4 Organic precursor thermal decomposition method
2.5 Electrochemical method
2.6 Other preparation methods
3 Conclusions and prospects

中图分类号: 

()

[1] Chen T, Chen S, Sheu H, Yeh C. J. Phys. Chem. B, 2002, 106: 9717-9722
[2] Vitulli G, Bernini M, Bertozzi S, Pitzalis E, Salvadori P, Coluccia S, Martra G. Chem. Mater., 2002, 14: 1183-1186
[3] Ebert G W, Rieke R D. J. Org. Chem., 1984, 49: 5280-5282
[4] Ebert G W, Rieke R D. J. Org. Chem., 1988, 53: 4482-4488
[5] Hassan J, Sévignon M, Gozzi C, Schulz E, Lemaire M. Chem. Rev., 2002, 102: 1359-1469
[6] Chen C S, Wu J H, Lai T W. J. Phys. Chem. C, 2010, 114: 15021-15028
[7] Ressler T, Kniep B L, Kasatkin I, Schlögl R. Angew. Chem. Int. Ed., 2005, 44: 4704-4707
[8] Evano G, Blanchard N, Toumi M. Chem. Rev., 2008, 108: 3054-3131
[9] Wang Y F, Biradar A V, Wang G, Sharma K K, Duncan C T, Rangan S, Asefa T. Chem. Eur. J., 2010, 16: 10735-10743
[10] Sarkar A, Mukherjee T, Kapoor S. J. Phys. Chem. C, 2008, 112: 3334-3340
[11] Panigrahi S, Kundu S, Basu S, Praharaj S, Jana S, Pande S, Ghosh S K, Pal A, Pal T. J. Phys. Chem. C, 2007, 111: 1612-1619
[12] Wei Y H, Chen S, Kowalczyk B, Huda S, Gray T P, Grzybowski B A. J. Phys. Chem. C, 2010, 114: 15612-15616
[13] Rodriguez J A, Liu P, Hrbek J, Evans J, Perez M. Angew. Chem. Int. Ed., 2007, 46: 1329-1332
[14] Espinós J P, Morales J, Barranco A, Caballero A, Holgado J P, González-Elipe A R. J. Phys. Chem. B, 2002, 106: 6921-6929
[15] Pedersen D B, Wang S. J. Phys. Chem. C, 2007, 111: 17493-17499
[16] Chan G H, Zhao J, Hicks E M, Schatz G C, Duyne R P V. Nano Lett., 2007, 7: 1947-1952
[17] Henkel A, Jakab A, Brunklaus G, Sonnichsen C. J. Phys. Chem. C, 2009, 113: 2200-2204
[18] Darugar Q, Qian W, El-Sayed M A, Pileni M P. J. Phys. Chem. B, 2006, 110: 143-149
[19] Chowdhury S, Bhethanabotla V R, Sen R. J. Phys. Chem. C, 2009, 113: 13016-13022
[20] Muniz-Miranda M, Gellini C, Giorgetti E. J. Phys. Chem. C, 2011, 115: 5021-5027
[21] Cao L, Diao P, Tong L, Zhu T, Liu Z. ChemPhysChem, 2005, 6: 913-918
[22] Wang Y F, Asefa T. Langmuir, 2010, 26: 7469-7474
[23] Wu H, Lin D, Pan W. Langmuir, 2010, 26: 6865-6868
[24] Huang H H, Yan F Q, Kek Y M, Chew C H, Xu G Q, Ji W, Oh P S, Tang S H. Langmuir, 1997, 13: 172-175
[25] Lisiecki I, Pileni M P. J. Am. Chem. Soc., 1993, 115: 3887-3896
[26] Lisiecki I, Billoudet F, Pileni M P. J. Phys. Chem., 1996, 100: 4160-4166
[27] Tanori J, Pileni M P. Langmuir, 1997, 13: 639-646
[28] Pileni M P. Langmuir, 1997, 13: 3266-3276
[29] Kelly K L, Coronado E, Zhao L L, Schatz G C. J. Phys. Chem. B, 2003, 107: 668-677
[30] Rice K P, Walker E J Jr, Stoykovich M P, Saunders A E. J. Phys. Chem. C, 2011, 115: 1793-1799
[31] Rickerby J, Steinke J H G. Chem. Rev., 2002, 102: 1525-1549
[32] Jeong S, Woo K, Kim D, Lim S, Kim J S, Shin H, Xia Y, Moon J. Advanced Functional Materials, 2002, 18: 679-686
[33] Perelaer J, Smith P J, Mager D, Soltman D, Volkman S K, Subramanian V, Korvink J G, Schubert U S. J. Mater. Chem., 2010, 20: 8446-8453
[34] Anyaogu K C, Fedorov A V, Neckers D C. Langmuir, 2008, 24: 4340-4346
[35] Gao F, Pang H, Xu S P, Lu Q Y. Chem. Commun., 2009, 24: 3571-3573
[36] Kim Y H, Lee D K, Cha H G, Kim C W, Kang Y C, Kang Y S. J. Phys. Chem. B, 2006, 110: 24923-24928
[37] Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L, Zacheo T B, Alessio M D, Zambonin P G, Enrico T. Chem. Mater., 2005, 17: 5255-5262
[38] Zhou J F, Wu Z S, Zhang Z J, Liu W M, Xue Q J. Tribology Letters, 2000, 8: 213-218
[39] Ren X L, Chen D, Tang F Q. J. Phys. Chem. B, 2005, 109: 15803-15807
[40] Xia Y, Xiong Y, Lim B, Skrabalak S E. Angew. Chem. Int. Ed., 2009, 48: 60-103
[41] 王立英(Wang L Y), 蔡灵剑(Cai L J), 钱东金(Qian D J). 化学进展 (Progress in Chemistry), 2010, 22(4): 580-592
[42] Wu S H, Chen D H. J. Colloid Interface Sci., 2004, 273: 165-169
[43] Chen H Y, Lee J H, Kim Y H, Shin D W, Park S C, Meng X H, Yoo J B. Journal of Nanoscience and Nano Technology, 2010, 10: 629-636
[44] Song Y, Doomes E E, Prindle J, Tittsworth R, Hormes J, Kumar C S S R. J. Phys. Chem. B, 2005, 109: 9330-9338
[45] Zhou G J, Lu K K, Yang Z S. Langmuir, 2006, 22: 5900-5903
[46] Liu Z P, Yang Y, Liang J B, Hu Z K, Li S, Peng S, Qian Y T. J. Phys. Chem. B, 2003, 107: 12658-12661
[47] Chang Y, Lye M L, Zeng H C. Langmuir, 2005, 21: 3746-3748
[48] Cao M H, Hu C W, Wang Y H, Guo Y H, Guo C X, Wang E B. Chem. Commun., 2003, 15: 1884-1885
[49] Wu C W, Mosher B P, Zeng T F. Journal of Nanoparticle Research, 2006, 8: 965-969
[50] Wang Y H, Chen P L, Liu M H. Nanotechnology, 2006, 17: 6000-6006
[51] Christian P, Bromfield M. J. Mater. Chem., 2010, 20: 1135-1139
[52] Sooklal K, Hanus L H, Ploehn H J, Murphy C J. Adv. Mater., 1998, 10: 1083-1087
[53] Strable E, Bulte J W M, Moskowitz B, Vivekanandan K, Allen M, Douglas T. Chem. Mater., 2001, 13: 2201-2209
[54] Esumi K, Suzuki A, Yamahira A, Torigoe K. Langmuir, 2000, 16: 2604-2608
[55] Seo Y S, Kim K S, Shin K, White H, Rafailovich M, Sokolov J. Langmuir, 2002, 18: 5927-5932
[56] Zhao M Q, Sun L, Crooks R M. J. Am. Chem. Soc., 1998, 120: 4877-4878
[57] Zhao M Q, Crooks R M. Chem. Mater., 1999, 11: 3379-3385
[58] Crooks R M, Zhao M Q, Sun L, Chechik V, Yeung L K. Acc. Chem. Res., 2001, 34: 181-190
[59] Balogh L, Tomalia D A. J. Am. Chem. Soc., 1998, 120: 7355-7356
[60] Floriano P N, Noble C O, McCarley R L. J. Am. Chem. Soc., 2001, 123: 10545-10553
[61] Jin L, Yang S P, Tian Q W, Wu H X, Cai Y J. Materials Chemistry and Physics, 2008, 112: 977-983
[62] Brust M, Walker M, Bethell D, Schiffrin D J, Whyman R. J. Chem. Soc. Chem. Commun., 1994, 7: 801-802
[63] Templeton A C, Wuelfing W P, Murray R W. Acc. Chem. Res., 2000, 33: 27-36
[64] Whetten R L, Shafigullin M N, Khoury J T, Schaaff T G, Vezmar I, Alvarez M M, Wilkinson A. Acc. Chem. Res., 1999, 32: 397-406
[65] Ziegler K J, Doty R C, Johnston K P, Korgel B A. J. Am. Chem. Soc., 2001, 123: 7797-7803
[66] Chen S W, Sommers J M. J. Phys. Chem. B, 2001, 105: 8816-8820
[67] Dong T Y, Wu H H, Lin M C. Langmuir, 2006, 22: 6754-6756
[68] Ang T P, Wee T S A, Chin W S. J. Phys. Chem. B, 2004, 108: 11001-11010
[69] Ang T P, Chin W S. J. Phys. Chem. B, 2005, 109: 22228-22236
[70] Wang X B, Liu W M, Yan F Y, Zhang Z J, Xu B S. Chemistry Letters, 2004, 33: 196-197
[71] Tzhayik O, Sawant P, Efrima S, Kovalev E, Klug J T. Langmuir, 2002, 18: 3364-3369
[72] Song X Y, Zhang W M, Yin Z L. Journal of Colloid and Interface Science, 2004, 273: 463-469
[73] Zhou J F, Yang J J, Zhang Z J, Liu W M, Xue Q J. Materials Research Bulletin, 1999, 34: 1361-1367
[74] Yang J G, Yang S H, Tang C B, He J, Tang M T. Transactions of Nonferrous Metals Society of China, 2007, 17: s1181-s1185
[75] Yang J G, Zhou Y L, Okamoto T, Bessho T, Satake S, Ichino R, Okido M. Chemistry Letters, 2006, 35: 648-649
[76] Yang J G, Okamoto T, Ichino R, Bessho T, Satake S, Okido M. Chemistry Letters, 2006, 35: 1190-1191
[77] Pulkkinen P, Shan J, Leppanen K, Kansakoski A, Laiho A, Jarn M, Tenhu H. ACS Applied Materials & Interfaces, 2009, 1: 519-525
[78] Aslam M, Gopakumar G, Shoba T L, Mulla I S, Vijayamohanan K, Kulkarni S K, Urban J, Vogel W. Journal of Colloid and Interface Science, 2002, 255: 79-90
[79] Han Y, Jiang J, Ying J Y. Langmuir, 2008, 24: 5842-5848
[80] Mulvaney P, Liz-Marzán L M, Giersig M, Ung T. J. Mater. Chem., 2000, 10: 1259-1270
[81] Wang H Z, Nakamura H, Yao K, Maeda H, Abe E. Chem. Lett., 2001, 30: 1168-1169
[82] Kobayashi Y, Sakuraba T. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2008, 317: 756-759
[83] Su X D, Zhao J Z, Zhao X, Guo Y P, Zhu Y C, Wang Z C. Nanotechnology, 2008, 19: art. no. 365610
[84] Capek I. Advances in Colloid and Interface Science, 2004, 110: 49-74
[85] Pileni M P. J. Phys. Chem. C, 2007, 111: 9019-9038
[86] Lisiecki I, Pileni M P. J. Phys. Chem., 1995, 99: 5077-5082
[87] Salzemann C, Lisiecki I, Urban J, Pileni M P. Langmuir, 2004, 20: 11772-11777
[88] Pileni M P. Nature Materials, 2003, 2: 145-150
[89] Filankembo A, Pileni M P. Applied Surface Science, 2000, 164: 260-267
[90] Vázquez-Vázquez C, Banobre-López M, Mitra A, Quintela M A L, Rivas J. Langmuir, 2009, 25: 8208-8216
[91] Sangregorio C, Galeotti M, Bardi U, Baglioni P. Langmuir, 1996, 12: 5800-5802
[92] Qiu S, Dong J, Chen G. J. Colloid Interface Sci., 1999, 216: 230-234
[93] Egorova E M, Revina A A. Colloids Surf. A, 2000, 168: 87-96
[94] Qi L, Ma J, Shen J. J. Colloid Interface Sci., 1997, 186: 498-500
[95] Cason J P, Khambaswadkar K, Roberts C B. Ind. Eng. Chem. Res., 2000, 39: 4749-4755
[96] Cason J P, Roberts C B. Ind. Eng. Chem. Res., 2004, 43: 6070-6081
[97] Cason J P, Roberts C B. J. Phys. Chem. B, 2000, 104: 1217-1221
[98] Cason J P, Miller M E, Thompson J B, Roberts C B. J. Phys. Chem. B, 2001, 105: 2297-2302
[99] Kitchens C L, McLeod M C, Roberts C B. J. Phys. Chem. B, 2003, 107: 11331-11338
[100] Ohde H, Hunt F, Wai C M. Chem. Mater., 2001, 13: 4130-4135
[101] Meshesha B T, Barrabés N, Medina F, Sueiras J E. Proceedings of the 1st WSEAS International Conference on Nanotechnology, 2009, 87-91
[102] Fievet F, Vincent F F, Lagier J P, Dumont B, Figlarz M. J. Mater. Chem., 1993, 3: 627-632
[103] Tang X F, Yang Z G, Wang W J. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 360: 99-104
[104] Park B K, Jeong S, Dongjo K, Moon J, Lim S, Kim J S. Journal of Colloid and Interface Science, 2007, 311: 417-424
[105] Sinha A, Sharma B P. Materials Research Bulletin, 2002, 37: 407-416
[106] Athawalea A A, Katrea P P, Kumar M, Majumdara M B. Materials Chemistry and Physics, 2005, 91: 507-512
[107] Nasirian A, Motlagh M M K. International Journal of Nanomanufacturing, 2010, 5: 324-329
[108] An lovar A, Orel Z C, igon M. J. Eur. Ceram. Soc., 2007, 27: 987-991
[109] Zhu H T, Zhang C Y, Yin Y S. Journal of Crystal Growth, 2004, 270: 722-728
[110] Zhao Y, Zhu J J, Hong J M, Bian N, Chen H Y. Eur. J. Inorg. Chem., 2004, 6: 4072-4080
[111] Nakamura T, Tsukahara Y, Sakata T, Mori H, Kanbe Y, Bessho H, Wada Y. Bull. Chem. Soc. Jpn., 2007, 80: 224-232
[112] Zhu H, Zhang C Y, Yin Y S. Nanotechnology, 2005, 16: 3079-3083
[113] Son S U, Park I K, Park J, Hyeon T. Chem. Commun., 2004, 7: 778-779
[114] Mott D, Galkoski J, Wang L, Luo J, Zhong C J. Langmuir, 2007, 23: 5740-5745
[115] Liu Y L, Walker A R H. Angew. Chem., 2010, 122: 6933-6937
[116] Kim Y H, Lee D K, Beong G J, Jeong J H, Kang Y S. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2006, 284/285: 364-368
[117] Yin M, Wu C K, Lou Y B, Burda C, Koberstein J T, Zhu Y, O'Brien S. J. Am. Chem. Soc., 2005, 127: 9506-9511
[118] Niasari M S, Davar F, Mir N. Polyhedron, 2008, 27: 3514-3518
[119] Niasari M S, Fereshteh Z, Davar F. Polyhedron, 2009, 28: 126-130
[120] Niasari M S, Mir N, Davar F. Applied Surface Science, 2010, 256: 4003-4008
[121] Hambrock J, Becker R, Wei J, Fischer R A. Chem. Commun., 2002, 1: 68-69
[122] Hambrock J, Schroter M K, Birkner A, Woll C, Fischer R A. Chem. Mater., 2003, 15: 4217-4222
[123] Bunge S D, Boyle T J, Headley T J. Nano Lett., 2003, 3: 901-905
[124] Duan J L, Liu J, Mo D, Yao H J, Maaz K, Chen Y H, Sun Y M, Hou M D, Qu X H, Zhang L, Chen Y F. Nanotechnology, 2010, 21: art. no. 365605
[125] Keilbach A, Moses J, Köhn R, Döblinger M, Bein T. Chem. Mater., 2010, 22: 5430-5436
[126] Molares M E T, Buschmann V, Dobrev D, Neumann R, Scholz R, Schuchert I U, Vetter J. Adv. Mater., 2001, 13: 62-65
[127] Tian M, Wang J, Kurtz J, Mallouk T E, Chan M H W. Nano Lett., 2003, 3: 919-923
[128] Haas I, Shanmugam S, Gedanken A. J. Phys. Chem. B, 2006, 110: 16947-16952
[129] Zhong S, Koch T, Wang M, Scherer T, Walheim S, Hahn H, Schimmel T. Small, 2009, 5: 2265-2270
[130] Choi H, Park S H. J. Am. Chem. Soc., 2004, 126: 6248-6249
[131] Kim C, Gu W, Briceno M, Robertson I M, Choi H, Kim K. Adv. Mater., 2008, 20: 1859-1863
[132] Wang J H, Yang T H, Wu W W, Chen L J, Chen C H, Chu C J. Nanotechnology, 2006, 17: 719-722
[133] Nasibulin A G, Shurygina L I, Kauppinen E I. Colloid Journal, 2005, 67: 1-20
[134] Jana N R, Wang Z L, Sau T K, Pal T. Current Science, 2000, 79: 1367-1370
[135] Dhas N A, Raj C P, Gedanken A. Chem. Mater., 1998, 10: 1446-1452
[136] Yeh M S, Yang Y S, Lee Y P, Lee H F, Yeh Y H, Yeh C S. J. Phys. Chem. B, 1999, 103: 6851-6857
[137] Henglein A. J. Phys. Chem. B, 2000, 104: 1206-1211
[138] Gotoh Y, Igarashi R, Ohkoshi Y, Nagura M, Akamatsu K, Dekib S. J. Mater. Chem., 2000, 10: 2548-2552
[139] Mallick K, Witcomb M J, Scurrell M S. European Polymer Journal, 2006, 42: 670-675
[140] Cioffi N, Torsi L, Ditaranto N, Sabbatini L, Zambonin P G, Tantillo G, Ghibelli L, Alessio M D, Zacheo T B, Traversa E. Appl. Phys. Lett., 2004, 85: 2417-2419
[141] Kumar R V, Mastai Y, Diamant Y, Gedanken A. J. Mater. Chem., 2001, 11: 1209-1213
[142] Xing Y, Liu Z X, Suib S L. Chem. Mater., 2007, 19: 4820-4826. Chem., 1988, 53: 4482-4488

[1] 曹如月, 肖晶晶, 王伊轩, 李翔宇, 冯岸超, 张立群. 杂Diels-Alder 环加成反应级联RAFT聚合[J]. 化学进展, 2023, 35(5): 721-734.
[2] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[3] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[4] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[5] 杨世迎, 李乾凤, 吴随, 张维银. 铁基材料改性零价铝的作用机制及应用[J]. 化学进展, 2022, 34(9): 2081-2093.
[6] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[7] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[8] 仲宣树, 刘宗建, 耿雪, 叶霖, 冯增国, 席家宁. 材料表面性质调控细胞黏附[J]. 化学进展, 2022, 34(5): 1153-1165.
[9] 孙浩, 王超鹏, 尹君, 朱剑. 用于电催化析氧反应电极的制备策略[J]. 化学进展, 2022, 34(3): 519-532.
[10] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[11] 曹祥康, 孙晓光, 蔡光义, 董泽华. 耐久型超疏水表面:理论模型、制备策略和评价方法[J]. 化学进展, 2021, 33(9): 1525-1537.
[12] 张震, 赵爽, 陈国兵, 李昆锋, 费志方, 杨自春. 碳化硅块状气凝胶的制备及应用[J]. 化学进展, 2021, 33(9): 1511-1524.
[13] 李金召, 李政, 庄旭品, 巩继贤, 李秋瑾, 张健飞. 纤维素纳米晶体的制备及其在复合材料中的应用[J]. 化学进展, 2021, 33(8): 1293-1310.
[14] 陈立忠, 龚巧彬, 陈哲. 超薄二维MOF纳米材料的制备和应用[J]. 化学进展, 2021, 33(8): 1280-1292.
[15] 向笑笑, 田晓雯, 刘会娥, 陈爽, 朱亚男, 薄玉琴. 石墨烯基气凝胶小球的可控制备[J]. 化学进展, 2021, 33(7): 1092-1099.
阅读次数
全文


摘要

铜纳米材料的制备