English
新闻公告
More
化学进展 2011, Vol. 23 Issue (6): 1196-1210 前一篇   后一篇

• 综述与评论 •

微米及纳米非球形聚合物粒子的制备方法

李宏福1,2, 张博明1*, 郭兴林2*   

  1. 1. 北京航空航天大学材料科学与工程学院 北京 100191;
    2. 中国科学院化学研究所高分子物理与化学国家重点实验室 北京 100190
  • 收稿日期:2010-09-01 修回日期:2010-12-01 出版日期:2011-06-24 发布日期:2011-05-29
  • 作者简介:e-mail: zbm@buaa.edu.cn; xlguo@iccas.ac.cn
  • 基金资助:

    国家自然科学基金项目(No.51073165)和中国科学院分子科学中心创新项目(CMS-CX200806)资助

Preparation of Micro-/Nano- Nonspherical Polymer Particles

Li Hongfu1,2, Zhang Boming1*, Guo Xinglin2*   

  1. 1. School of Materials Science and Engineering, Beihang University, Beijing 100191, China;
    2. State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2010-09-01 Revised:2010-12-01 Online:2011-06-24 Published:2011-05-29

具有精确形状的聚合物粒子已经被广泛应用到各个研究领域,尤其是在设计新型载药系统时,微米或纳米非球形聚合物粒子在药物释放、体内传输、循环、靶向能力、被巨噬细胞内吞的速率以及细胞膜上的黏附作用等多方面都比相应的球形粒子表现出更加明显的优越性。因此能够制备出特定形状的非球形粒子作为药物载体可以提高综合疗效。但是,目前在微米或纳米粒子研究中,球形体系的研究一直占主导地位,所以有必要将微米及纳米非球形聚合物粒子的制备方法进行总结。本文详细介绍了14种微米及纳米非球形聚合物粒子的制备方法(包括微流体通道法、球形粒子拉伸法、微孔硅石法、模板与粒子自组装法、非润湿模板复形法、反应离子刻蚀法、电喷法、离子束辐射法、种子聚合相分离法、细乳液聚合法、界面部分修饰法、两亲高分子自组装法、水包油乳液溶剂蒸发法、Y形状表面活性剂法等)及各自的优缺点。

Precisely shaped polymer particles are widely used for various applications, especially in the design of new carriers for drug delivery, micro- or nano- nonspherical polymer particles exhibit more obvious advantages to their corresponding spherical particles, such as in the drug release, in vivo transportation, circulation, targeting ability, the swallow speed by the cells, and the adhesion behavior on in vascular wall. If we can prepare the nonspherical particles with specific shape for the drug carriers it will greatly enhance in vivo therapy efficiency. But in the particle research field, until now, spherical system research is in the dominate position, so it’s necessary to summarize the preparation methods of the micro- or nano- nonspherical polymer particles. In this review, 14 preparation methods (microfluidics, stretching of spherical particles, porous silica, template and particles self-assembly, particle replication in nonwetting templates, reactive ion etching, electrospray, ion beam irradiation, controlled phase separation in seeded polymerization, miniemulsion polymerization, local surface modification at the Interface, amphiphilic macromolecule self-assembly, oil-in-water emulsion solvent evaporation technique, Y-shape surfactant) as well as their advantages and disadvantages of micro- or nano- nonspherical polymer particles are introduced in detail. These methods could be joined up to prepare more complex shapes.

中图分类号: 

()

[1] Lu Y, Yin Y, Xia Y. Adv. Mater., 2001, 13: 415-420
[2] Stolnik S, Illum L, Davis S S. Advanced Drug Delivery Reviews, 1995, 16: 195-214
[3] Langer R, Tirrell D A. Nature, 2004, 428: 487-492
[4] Champion J A, Katare Y K, Mitragotri S. Proc. Natl. Acad. Sci. USA., 2007, 104(29): 11901-11904
[5] Champion J A, Katare Y K, Mitragotri S. J. Control Release, 2007, 121: 3-9
[6] Simone E A, Dziubla T D, Muzykantov V R. Expert Opin. Drug Delivery, 2008, 5 (12): 1283-1300
[7] Hsieh D S T, Rhine W D, Langer R. J. Pharm. Sci., 1983, 72 (1): 17-22
[8] Decuzzi P, Ferrari M. Biomaterials, 2006, 27: 5307-5314
[9] Geng Y, Dalhaimer P, Cai S S, Tsai R, Tewari M, Minko T, Discher D E. Nat. Nanotechnol., 2007, 2(4): 249-255
[10] Simone E A, Dziubla T D, Discher D E, Muzykantov V R. Biomacromolecules, 2009, 10: 1324-1330
[11] Muro S, Garnacho C, Champion J A, Leferovich J, Gajewski C, Schuchman E H, Mitragotri S, Muzykantov V R. Mol. Ther., 2008, 16(8): 1450-1458
[12] Frojmovic M M, Milton J G. Physiol. Rev., 1982, 62: 185-261
[13] Champion J A, Mitragotri S. PNAS, 2006, 103(13): 4930-4934
[14] Gratton S E A, Ropp P A, Pohlhaus P D, Luft J C, Madden V J, Napier M E, DeSimone J M. PNAS, 2008, 105(33): 11613-11618
[15] Gavze E, Shapiro M. J. Fluid Mech., 1998, 371: 59-79
[16] Dendukuri D, Tsoi K, Hatton T A, Doyle P S. Langmuir, 2005, 21(6): 2113-2116
[17] Xu S Q, Nie Z H, Seo M, Lewis P, Kumacheva E, Stone H A, Garstecki P, Weibel D B, Gitlin I, Whitesides G M. Angew. Chem. Int. Ed. Engl., 2005, 44(5): 724-728
[18] Anna S L, Bontoux N, Stone H A. Appl. Phys. Lett., 2003, 82: 364-366
[19] Dendukuri D, Pregibon D C, Collins J, Hatton T A, Doyle P S. Nat. Mater., 2006, 5(5): 365-369
[20] Kobayashi I, Uemura K, Nakajima M. Langmuir, 2006, 22: 10893-10897
[21] Ho C C, Keller A, Odell J A, Hatton T A, Doyle P S. Colloid Polym. Sci., 1993, 271(5): 469-479
[22] Lu Y, Yin Y D, Xia Y N. Adv. Mater., 2001, 13: 271-274
[23] Mohraz A, Solomon M J. Langmuir, 2005, 21: 5298-5306
[24] Xu C Y, Wang Q, Xu H F. Colloid Polym. Sci., 2007, 285: 1471-1478
[25] Kim J Y, Yoon S B, Kooli F, Yu J S. J. Mater. Chem., 2001, 11: 2912-2914
[26] Sozzani P, Bracco S, Comotti A, Simonutti R, Valsesla P, Sakamoto Y, Terasaki O. Nat. Mater., 2006, 5(7): 545-551
[27] Velev O D, Lenhoff A M, Kaler E W. Science, 2000, 287(5461): 2240-2243
[28] Yin Y D, Xia Y N. Adv. Mater., 2001, 13(4): 267-271
[29] Sung K E, Vanapalli S A, Mukhija D, McKay H A, Millunchick J M, Burns M A, Solomon M J. J. Am. Chem. Soc., 2008, 130: 1335-1340
[30] Manoharan V N, Elsesser M T, Pine D J. Science, 2003, 301(5632): 483-487
[31] Rolland J P, Maynor B W, Euliss L E, Exner A E, Denison G M, DeSimone J M. J. Am. Chem. Soc., 2005, 127(28): 10096-10100
[32] Powell H M, Lannutti J J. Langmuir, 2003, 19: 9071-9078
[33] Choi D G, Yu H K, Jang S G, Yang S M. J. Am. Chem. Soc., 2004, 126: 7019-7025
[34] Zheng Y B, Wang Y H, Wang S J, Huan C H A. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2006, 277: 27-36
[35] Almería B, Deng W W, Fahmy T M, Gomez A. Journal of Colloid and Interface Science, 2010, 343: 125-133
[36] Tsukuda S, Seki S, Sugimoto M, Tagawa S. Surface and Coatings Technology, 2007, 201: 8526-8530
[37] Mock E B, Bruyn H D, Hawkett B S, Gilbert R G, Zukoski C F. Langmuir, 2006, 22: 4037-4043
[38] Kim J W, Larsen R J, Weitz D A. Adv. Mater., 2007, 19: 2005-2009
[39] Okubo M, Miya T, Minami H, Tskekoh R. Journal of Applied Polymer Science, 2002, 83: 2013-2021
[40] Wang D N, Dimonie V L, Sudol E D, El-Aasser M S. Journal of Applied Polymer Science, 2002, 84: 2710-2720
[41] Okubo M, Fujibayashi T, Yamada M, Minami H. Colloid Polym. Sci., 2005, 283: 1041-1045
[42] Okubo M, Takekoh R, Suzuki A. Colloid Polym. Sci., 2002, 280: 1057-1061
[43] Okubo M, Fujibayashi T, Terada A. Colloid Polym. Sci., 2005, 283: 793-798
[44] Fujibayashi T, Okubo M. Langmuir, 2007, 23: 7958-7962
[45] Qiang W L, Wang Y L, He P, Xu H, Gu H C, Shi D L. Langmuir, 2008, 24: 606-608
[46] Lu W, Chen M, Wu L M. Journal of Colloid and Interface Science, 2008, 328: 98-102
[47] Liu B, Wei W, Qu X Z, Yang Z Z. Angew. Chem. Int. Ed., 2008, 47: 3973-3975
[48] Hong L, Jiang S, Granick S. Langmuir, 2006, 22: 9495-9499
[49] Fujimoto K, Nakahama K, Shidara M, Kawaguchi H. Langmuir, 1999, 15: 4630-4635
[50] Ge X P, Wang M Z, Yuan Q, Wang H, Ge X W. Chem. Commun., 2009, 2765-2767
[51] Zhang H W, Bei J Z, Wang S G. Biomaterials, 2009, 30: 100-107
[52] Heslinga M J, Mastria E M, Eniola-Adefeso O. Journal of Controlled Release, 2009, 138: 235-242
[53] Wang X Y, Liu W J, Wang X B, Zhang Z C, Liu H R. Materials Letters, 2007, 61: 4478-4481
[54] Busuttil K. Materials Today, 2007, 10(9): 15-15
[55] Xia Y N, Whitesides G M. Angew. Chem. Int. Ed., 1998, 37: 551-575
[56] Rolland J P, Van Dam R M, Schorzman D A, Quake S R, DeSimone J M. J. Am. Chem. Soc., 2004, 126: 8349-8349
[57] Haynes C L, Van Duyne R P. J. Phys. Chem. B, 2001, 105: 5599-5611
[58] Hulteen J C, Treichel D A, Smith M T, Duval M L, Jensen T R, Van Duyne R P. J. Phys. Chem. B, 1999, 103: 3854-3863
[59] Yi D K, Kim D Y. Chem. Commun., 2003, 982-983
[60] Egitto F D, Matienzo L J. IBM J. Res. Dev., 1994, 38: 423-439
[61] Nakamatsu J, Delgado-Aparicio L F, Da Silva R, Soberon F. J Adhes. Sci. Technol., 1999, 13 : 753-761.
[62] He Q G, Liu Z C, Xiao P F, Liang R Q, He N Y, Lu Z H. Langmuir, 2003, 19: 6982-6986
[63] Shenoy S L, Bates W D, Frisch H L, Wnek G E. Polymer, 2005, 46: 3372-3384
[64] Xie J W, Lim L K, Phua Y Y, Hua J S, Wang C H. J. Colloid Interface Sci., 2006, 302: 103-112
[65] Yao J, Lim L K, Xie J W, Hua J S, Wang C H. J. Aerosol. Sci., 2008, 39 : 987-1002
[66] Hong Y L, Li Y Y, Yin Y Z, Li D M, Zou G T. J. Aerosol. Sci., 2008, 39: 525-536
[67] Hogan C J Jr, Yun K M, Chen D R, Lenggoro I W, Biswas P, Okuyama K. Colloids Surf. A, 2007, 311: 67-76
[68] Lenggoro I W, Hata T, Iskandar F, Lunden M M, Okuyama K. J. Mater. Res., 2000, 15: 733-743
[69] Okuyama K, Lenggoro I W. Chem. Eng. Sci., 2003, 58: 537-547
[70] Vehring R, Foss W R, Lechuga-Ballesteros D. J. Aerosol. Sci., 2007, 38: 728-746
[71] Park C H, Lee J. J. Appl. Poly. Sci., 2009, 114: 430-437
[72] Matsumoto T, Okubo M, Shibao S. Kobunshi Ronbunshu, 1976, 33: 575-583
[73] Okubo M, Katsuta Y, Yamada A, Matsumoto T. Kobunshi Ronbunshu, 1979, 36: 459-464
[74] Cho I, Lee K W. J. Appl. Polym. Sci., 1985, 30: 1903-1926
[75] Okubo M, Ando M, Yamada A, Katsuta Y, Matsumoto T. J. Polym. Sci. Polym. Lett. Ed., 1981, 19: 143-147
[76] Okubo M, Kanaida K, Matsumoto T. Colloid Polym. Sci., 1987, 265: 876-881
[77] Durant Y G, Sundberg D C. Macromolecules, 1996, 29: 8466-8472
[78] Chou Y J, El-Aasser M S, Vanderhoff J W. J. Dispersion Sci. Technol., 1980, 1: 129-150
[79] Perro A, Reculusa S, Ravaine S, Bourgeat-Lami E, Duguet E. J. Mater. Chem., 2005, 15: 3745-3760
[80] Zhao Y, Liang H J, Wang S G, Wu C. J. Phys. Chem. B, 2001, 105(4): 848-851
[81] McGinity J W, O'Donnell P B. Adv. Drug Deliv. Rev., 1997, 28(1): 25-42
[82] Eniola A O, Hammer D A. J. Control. Release, 2003, 87: 15-22
[83] Matijevic E. Langmuir, 1994, 10: 8-16

[1] 鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
[2] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[3] 王龙, 周庆萍, 吴钊峰, 张延铭, 叶小我, 陈长鑫. 基于碳纳米管的光伏电池[J]. 化学进展, 2023, 35(3): 421-432.
[4] 刘峻, 叶代勇. 抗病毒涂层[J]. 化学进展, 2023, 35(3): 496-508.
[5] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[6] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[7] 张永, 张辉, 张逸, 高蕾, 卢建臣, 蔡金明. 表面合成异质原子掺杂的石墨烯纳米带[J]. 化学进展, 2023, 35(1): 105-118.
[8] 范克龙, 高利增, 魏辉, 江冰, 王大吉, 张若飞, 贺久洋, 孟祥芹, 王卓然, 樊慧真, 温涛, 段德民, 陈雷, 姜伟, 芦宇, 蒋冰, 魏咏华, 李唯, 袁野, 董海姣, 张鹭, 洪超仪, 张紫霞, 程苗苗, 耿欣, 侯桐阳, 侯亚欣, 李建茹, 汤国恒, 赵越, 赵菡卿, 张帅, 谢佳颖, 周子君, 任劲松, 黄兴禄, 高兴发, 梁敏敏, 张宇, 许海燕, 曲晓刚, 阎锡蕴. 纳米酶[J]. 化学进展, 2023, 35(1): 1-87.
[9] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[10] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[11] 张荡, 王曦, 王磊. 生物酶驱动的微纳米马达在生物医学领域的应用[J]. 化学进展, 2022, 34(9): 2035-2050.
[12] 冯海弟, 赵璐, 白云峰, 冯锋. 纳米金属有机框架在肿瘤靶向治疗中的应用[J]. 化学进展, 2022, 34(8): 1863-1878.
[13] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[14] 刘亚伟, 张晓春, 董坤, 张锁江. 离子液体的凝聚态化学研究[J]. 化学进展, 2022, 34(7): 1509-1523.
[15] 陆峰, 赵婷, 孙晓军, 范曲立, 黄维. 近红外二区发光稀土纳米材料的设计及生物成像应用[J]. 化学进展, 2022, 34(6): 1348-1358.