English
新闻公告
More
化学进展 2011, Vol. 23 Issue (5): 880-892 前一篇   后一篇

• 综述与评论 •

贵金属纳米团簇的制备及在生物检测中的应用

杨群峰, 刘建云, 陈华萍, 王显祥, 黄乾明, 单志   

  1. 四川农业大学生命科学与理学院 雅安 625014
  • 收稿日期:2010-07-01 修回日期:2010-10-01 出版日期:2011-05-24 发布日期:2011-05-04
  • 基金资助:

    四川省教育厅重点科研项目(No.08ZA053)和四川农业大学科技创新基金项目(No.00731200)资助

Preparation of Noble Metallic Nanoclusters and Its Application in Biological Detection

Yang Qunfeng, Liu Jianyun, Chen Huaping, Wang Xianxiang, Huang Qianming, Shan Zhi   

  1. College of Life and Science, Sichuan Agricultural University, Ya'an 625014, China
  • Received:2010-07-01 Revised:2010-10-01 Online:2011-05-24 Published:2011-05-04

介绍了贵金属纳米团簇(noble metallic nanoclusters, NMNCs)的研究现状及其作为一种新型荧光标记纳米材料在生物检测中的重要作用。重点总结了贵金属纳米团簇的优异性质、三种常用的制备方法(模板法、单分子层保护法和蚀刻法)及其近年来在生物传感器、生物探针、细胞标记及成像等领域的应用进展。简要评述和展望了贵金属纳米团簇的发展方向和应用前景。

As a new kind of fluorescent material,noble metallic nanoclusters (NMNCs) has recently received increasing attention due to its unique characteristics, which make it good candidate for biological application especially in the field of biological detection. This review first addresses the typical characteristics of NMNCs, and then summarizes the recent developments of preparation methods of NMNCs (i.e. template method, monolayer protected method and ligand etching method) and its applications in the area of biological sensors, biological probes, cell labeling and imaging. Finally, the trends and future perspectives in this research area are outlined.

中图分类号: 

()

[1] 林章碧(Lin Z B), 苏星光(Su X G), 张家骅(Zhang J H), 金钦汉(Jin Q H). 分析化学(Chinese Journal of Analytical Chemistry), 2002, 2: 237-241
[2] Vosch T, Antoku Y, Hsiang J C, Richards C I, Gonzalez J I, Dickson R M. Proc. Natl. Acad. Sci. USA, 2007, 104: 12616-12621
[3] Somers R C, Bawendi M G, Nocera D G. Chem. Soc. Rev., 2007, 36: 579-591
[4] Liu W, Howarth M, Greytak A B, Zheng Y, Nocera D G, Ting A Y, Bawendi M G. J. Am. Chem. Soc., 2008, 130: 1274-1284
[5] Boeneman K, Delehanty J B, Susumu K, Stewart M H, Medintz I L. J. Am. Chem. Soc., 2010, 132: 5975-5977
[6] 刘建云(Liu J Y), 黄乾明(Huang Q M), 王显祥(Wang X X), 杨群峰(Yang Q F), 陈华萍(Chen H P). 化学进展(Progress in Chemistry), 2010, 22: 1068-1076
[7] Verberk R, Van Oijen A M, Orrit M. Phys. Rev. B, 2002, 66: art. no. 233202
[8] Derfus A M, Chan W C W, Bhatia S N. Nano Lett., 2004, 4: 11-18
[9] Zheng J, Zhang C, Dickson R M. Phys. Rev. Lett., 2004, 93: art. no. 077402
[10] Zheng J, Nicovich P R, Dickson R M. Annu. Rev. Phys. Chem., 2007, 58: 409-431
[11] Richards C I, Choi S, Hsiang J C, Antoku Y, Vosch T, Bongiorno A, Tzeng Y L, Dickson R M. J. Am. Chem. Soc., 2008, 130: 5038-5039
[12] Zheng J, Dickson R M. J. Am. Chem. Soc., 2002, 124: 13982-13983
[13] Triulzi R C, Micic M, Giordani S, Serry M, Chiou W A, Leblanc R M. Chem. Commun., 2006, 5068-5070
[14] Chen W, Tu X, Guo X. Chem. Commun., 2009, 1736-1738
[15] Lin S Y, Chen N T, Sum S P, Lo L W, Yang C S. Chem. Commun. (Camb), 2008, 4762-4764
[16] Yu J, Choi S, Richards C I, Antoku Y, Dickson R M. Photochem. Photobiol., 2008, 84: 1435-1439
[17] Guo W, Yuan J, Dong Q, Wang E. J. Am. Chem. Soc., 2010, 132: 932-934
[18] Chen S, Ingram R S, Hostetler M J, Pietron J J, Murray R W, Schaaff T G, Khoury J T, Alvarez M M, Whetten R L. Science, 1998, 280: 2098-2101
[19] Lee D, Donkers R L, Wang G, Harper A S, Murray R W. J. Am. Chem. Soc., 2004, 126: 6193-6199
[20] Crespo P, Litran R, Rojas T C, Multigner M, de la Fuente J M, Sanchez-Lopez J C, Garcia M A, Hernando A, Penades S, Fernandez A. Phys. Rev. Lett., 2004, 93: art. no. 087204
[21] Petty J T, Zheng J, Hud N V, Dickson R M. J. Am. Chem. Soc., 2004, 126: 5207-5212
[22] Lin C A J, Lee C H, Hsieh J T, Wang H H, Li J K, Shen J L, Chan W H, Yeh H I, W H Chang. J. Med. Biol. Eng., 2009, 6: 276-283
[23] Garcia-Martinez J C, Crooks R M. J. Am. Chem. Soc., 2004, 126: 16170-16178
[24] Zhang J G, Xu S Q, Kumacheva E. Adv. Mater., 2005, 17: 2336-2340
[25] Duan H, Nie S. J. Am. Chem. Soc., 2007, 129: 2412-2413
[26] Shang L, Dong S. Chem. Commun. (Camb), 2008, 1088-1090
[27] Shen Z, Duan H W, Frey H. Adv. Mater., 2007, 19: 349-352
[28] Braun E, Eichen Y, Sivan U, Ben-Yoseph G. Nature, 1998, 391: 775-778
[29] Yu J, Patel S A, Dickson R M. Angew. Chem. Int. Ed. Engl., 2007, 46: 2028-2030
[30] Neill P R O, Velazquez L R, Dunn D G, Gwinn E G, Fygenson D K. J. Phys. Chem. C, 2009, 113: 4229-4233
[31] Xie J, Zheng Y, Ying J Y. J. Am. Chem. Soc., 2009, 131: 888-889
[32] Linnert T, Mulvaney P, Henglein A, Weller H. J. Am. Chem. Soc., 1990, 112: 4657-4664
[33] Hatchett D W, Josowicz M, Janata J, Baer D R. Chem. Mater., 1999, 11: 2989-2994
[34] Wei H, Wang Z, Yang L, Tian S, Hou C, Lu Y. Analyst, 2010, 135: 1406-1410
[35] Yamane T, Davidson N. Biochimica et Biophysica Acta, 1962, 55: 609-621
[36] Daune M, Dekker C A, Schachman H K. Biopolymers, 1966, 4: 51 - 76
[37] Eichhorn G L, Butzow J J, Clark P, Tarien E. Biopolymers, 1967, 5: 283-296
[38] Ritchie C M, Johnsen K R, Kiser J R, Antoku Y, Dickson R M, Petty J T. J. Phys. Chem. C, 2007, 111: 175-181
[39] Sengupta B, Ritchie C M, Buckman J G, Johnsen K R, Goodwin P M, Petty J T. J. Phys. Chem. C, 2008, 112: 18776-18782
[40] Antoku Y. Doctoral Dissertation of Georgia Institute of Technology, 2007
[41] Gwinn E G, O'Neill P R, Guerrero A J, Bouwmeester D, Fygenson D K. Adv. Mater., 2008, 20: 279-283
[42] Gibson D W, Beer M, Barrnett R J. Biochemistry, 1971, 10: 3669-3679
[43] Ackerson C J, Jadzinsky P D, Kornberg R D. J. Am. Chem. Soc., 2005, 127: 6550-6551
[44] Gentilini C, Evangelista F, Rudolf P, Franchi P, Lucarini M, Pasquato L. J. Am. Chem. Soc., 2008, 130: 15678-15682
[45] Branham M R, Douglas A D, Mills A J, Tracy J B, White P S, Murray R W. Langmuir, 2006, 22: 11376-11383
[46] Cha S H, Kim J U, Kim K H, Lee J C. Chem. Mater., 2007, 19: 6297-6303
[47] Hou W, Dasog M, Scott R W J. Langmuir, 2009, 25: 12954-12961
[48] Porta F, Krpetic Z, Prati L, Gaiassi A, Scari G. Langmuir, 2008, 24: 7061-7064
[49] Stefanescu D M, Glueck D S, Siegel R, Wasylishen R E. Langmuir, 2004, 20: 10379-10381
[50] Brust M, Walker M, Bethell D, Schiffrin D J, Whyman R. J. Chem. Soc. Chem. Commun., 1994, 801-802
[51] Jana N R, Peng X. J. Am. Chem. Soc., 2003, 125: 14280-14281
[52] Lin C A, Yang T Y, Lee C H, Huang S H, Sperling R A, Zanella M, Li J K, Shen J L, Wang H H, Yeh H I, Parak W J, Chang W H. ACS Nano, 2009, 3: 395-401
[53] Huang C C, Yang Z, Lee K H, Chang H T. Angew. Chem. Int. Ed. Engl., 2007, 46: 6824-6828
[54] Huang C C, Liao H Y, Shiang Y C, Lin Z H, Yanga Z, Chang H T. J. Mater. Chem., 2009, 19: 755-759
[55] Negishi Y, Nobusada K, Tsukuda T. J. Am. Chem. Soc., 2005, 127: 5261-5270
[56] Aryal S, Remant B K C, Dharmaraj N, Bhattarai N, Kim C H, Kim H Y. Spectrochim. Acta A, 2006, 63: 160-163
[57] Templeton A C, Cliffel D E, Murray R W. J. Am. Chem. Soc., 1999, 121: 7081-7089
[58] Wang G, Huang T, Murray R W, Menard L, Nuzzo R G. J. Am. Chem. Soc., 2005, 127: 812-813
[59] Wang G, Guo R, Kalyuzhny G, Choi J P, Murray R W. J. Phys. Chem. B, 2006, 110: 20282-20289
[60] Yang Y, Chen S. Nano Lett., 2003, 3: 75-79
[61] Negishi Y, Tsukuda T. Chem. Phys. Lett., 2004, 383: 161-165
[62] Donkers R L, Lee D, Murray R W. Langmuir, 2004, 20: 1945-1952
[63] Kim J, Lema K, Ukaigwe M, Lee D. Langmuir, 2007, 23: 7853-7858
[64] Devadas M S, Kwak K, Park J W, Choi J H, Jun C H, Sinn E, Ramakrishna G, Lee D. J. Phys. Chem. Lett., 2010, 1: 1497-1503
[65] Shichibu Y, Negishi Y, Tsunoyama H, Kanehara M, Teranishi T, Tsukuda T. Small, 2007, 3: 835-839
[66] Woehrle G H, Warner M G, Hutchison J E. J. Phys. Chem. B, 2002, 106: 9979-9981
[67] Shichibu Y, Negishi Y, Tsukuda T, Teranishi T. J. Am. Chem. Soc., 2005, 127: 13464-13465
[68] Zhu M, Aikens C M, Hollander F J, Schatz G C, Jin R. J. Am. Chem. Soc., 2008, 130: 5883-5885
[69] Zhu M, Lanni E, Garg N, Bier M E, Jin R. J. Am. Chem. Soc., 2008, 130: 1138-1139
[70] Wu Z, Suhan J, Jin R. J. Mater. Chem., 2009, 19: 622-626
[71] Wu Z, Lanni E, Chen W, Bier M E, Ly D, Jin R. J. Am. Chem. Soc., 2009, 131: 16672-16674
[72] Zhu M, Qian H, Jin R. J. Am. Chem. Soc., 2009, 131: 7220-7221
[73] Zhu M, Qian H, Jin R. J. Phys. Chem. Lett., 2010, 1: 1003-1007
[74] Tracy J B, Kalyuzhny G, Crowe M C, Balasubramanian R, Choi J P, Murray R W. J. Am. Chem. Soc., 2007, 129: 6706-6707
[75] Huang C C, Chen C T, Shiang Y C, Lin Z H, Chang H T. Anal. Chem., 2009, 81: 875-882
[76] Kawasaki H, Yamamoto H, Fujimori H, Arakawa R, Inadab M, Iwasakia Y. Chem. Commun., 2010, 46: 3759-3761
[77] Edinger K, Golzhauser A, Demota K, Woll C, Grunze M. Langmuir, 1993, 9: 4-8
[78] Schaaff T, Whetten R. J. Phys. Chem. B, 1999, 103: 9394-9396
[79] Warner M G, Reed S M, Hutchison J E. Chem. Mater., 2000, 12: 3316-3320
[80] Woehrle G H, Hutchison J E. Inorg. Chem., 2005, 44: 6149-6158
[81] Jin R, Egusa S, Scherer N F. J. Am. Chem. Soc., 2004, 126: 9900-9901
[82] Woehrle G H, Brown L O, Hutchison J E. J. Am. Chem. Soc., 2005, 127: 2172-2183
[83] Tsunoyama H, Nickut P, Negishi Y, Al-Shamery K, Matsumoto Y, Tsukuda T. J. Phys. Chem. C, 2007, 111: 4153-4158
[84] Muhammed M A, Ramesh S, Sinha S S, Pal S K, Pradeep T. Nano Res., 2008, 1: 333-340
[85] Muhammed M A, Verma P K, Pal S K, Kumar R C, Paul S, Omkumar R V, Pradeep T. Chemistry, 2009, 15: 10110-10120
[86] Shibu E S, Radha B, Verma P K, Bhyrappa P, Kulkarni G U, Pal S K, Pradeep T. ACS Appl. Mater. Interfaces, 2009, 1: 2199-2210
[87] Zhou R J, Shi M M, Chen X Q, Wang M, Chen H Z. Chem. Eur. J., 2009, 15: 4944-4951
[88] Rao T, Pradeep T. Angew. Chem. Int. Ed., 2010, 49: 3925-3929
[89] Gazit V, Ben-Abraham R, Coleman R, Weizman A, Katz Y. Amino Acids, 2004, 26: 163-168
[90] Wang W, Rusin O, Xu X, Kim K K, Escobedo J O, Fakayode S O, Fletcher K A, Lowry M, Schowalter C M, Lawrence C M, Fronczek F R, Warner I M, Strongin R M. J. Am. Chem. Soc., 2005, 127: 15949-15958
[91] Shang L, Dong S. Biosens. Bioelectron., 2009, 24: 1569-1573
[92] Shang L, Qin C, Wang T, Wang M, Wang L, Dong S. J. Phys. Chem. C, 2007, 111: 13414-13417
[93] Tanaka F, Mase N, Barbas C F. Chem. Commun., 2004, 1762-1763
[94] Huang C C, Chiang C K, Lin Z H, Lee K H, Chang H T. Anal. Chem., 2008, 80: 1497-1504
[95] Sun X L, Cui W, Haller C, Chaikof E L. Chem. Bio. Chem., 2004, 5: 1593-1596
[96] Babu P, Sinha S, Surolia A. Bioconjug. Chem., 2007, 18: 146-151
[97] Yu J, Choi S, Dickson R M. Angew. Chem. Int. Ed., 2009, 48: 318-320
[98] Horky M, Kotala V, Anton M, Wesierska-Gadek J. Ann. N. Y. Acad. Sci., 2002, 973: 258-264
[99] Lin C A J, Lee C H, Hsieh J T, Yu W C, Yang H Z, Li J K, Sperling R, Wang H H, Yeh H I, Parak W J, Chang W H. Proc. SPIE-Int. Soc. Opt. Eng., 2010, 7575: 7575061-7575069
[100] Retnakumari A, Setua S, Menon D, Ravindran P, Muhammed H, Pradeep T, Nair S, Koyakutty M. Nanotechnology, 2009, 21: art. no. 055103
[101] Antoku Y, Hotta J, Mizuno H, Dickson R M, Hofkens J, Vosch T. Photochem. Photobiol. Sci., 2010, 9: 716-721
[102] Frangioni J V. Curr. Opin. Chem. Biol., 2003, 7: 626-634
[103] Xing Y, Rao J H. Cancer Biomarkers, 2008, 4: 307-319
[104] Zheng Y, Gao S, Ying J Y. Adv. Mater., 2007, 19: 376-380
[105] Schipper M L, Iyer G, Koh A L, Cheng Z, Ebenstein Y, Aharoni A, Keren S, Bentolila L A, Li J Q, Rao J H, Chen X Y, Banin U, Wu A M, Sinclair R, Weiss S, Gambhir S S. Small, 2009, 5: 126-134
[106] Wu X, He X X, Wang K M, Xie C, Zhou B, Qing Z H. Nanoscale, 2010, 2: 2244-2249
[107] Yeh H C, Sharma J, Han J J, Martinez J S, Werner J H. Nano Lett., 2010, 10: 3106-3110

[1] 于兰, 薛沛然, 李欢欢, 陶冶, 陈润锋, 黄维. 圆偏振发光性质的热活化延迟荧光材料及电致发光器件[J]. 化学进展, 2022, 34(9): 1996-2011.
[2] 赖燕琴, 谢振达, 付曼琳, 陈暄, 周戚, 胡金锋. 基于1,8-萘酰亚胺的多分析物荧光探针的构建和应用[J]. 化学进展, 2022, 34(9): 2024-2034.
[3] 李立清, 郑明豪, 江丹丹, 曹舒心, 刘昆明, 刘晋彪. 基于邻苯二胺氧化反应的生物分子比色/荧光探针[J]. 化学进展, 2022, 34(8): 1815-1830.
[4] 周宇航, 丁莎, 夏勇, 刘跃军. 荧光探针在半胱氨酸检测的应用[J]. 化学进展, 2022, 34(8): 1831-1862.
[5] 颜范勇, 臧悦言, 章宇扬, 李想, 王瑞杰, 卢贞彤. 检测谷胱甘肽的荧光探针[J]. 化学进展, 2022, 34(5): 1136-1152.
[6] 赵惠, 胡文博, 范曲立. 双光子荧光探针在生物传感中的应用[J]. 化学进展, 2022, 34(4): 815-823.
[7] 田浩, 李子木, 汪长征, 许萍, 徐守芳. 分子印迹荧光传感构建及应用[J]. 化学进展, 2022, 34(3): 593-608.
[8] 张婷婷, 洪兴枝, 高慧, 任颖, 贾建峰, 武海顺. 基于铜金属有机配合物的热活化延迟荧光材料[J]. 化学进展, 2022, 34(2): 411-433.
[9] 李彬, 于颖, 幸国香, 邢金峰, 刘万兴, 张天永. 手性无机纳米材料圆偏振发光的研究进展[J]. 化学进展, 2022, 34(11): 2340-2350.
[10] 张业文, 杨青青, 周策峰, 李平, 陈润锋. 热激活延迟荧光材料的光物理行为及性能预测[J]. 化学进展, 2022, 34(10): 2146-2158.
[11] 王振, 李曦, 栗园园, 王其, 卢晓梅, 范曲立. 可激活的NIR-Ⅱ探针用于肿瘤成像[J]. 化学进展, 2022, 34(1): 198-206.
[12] 李斌, 付艳艳, 程建功. 检测有机磷神经毒剂及模拟物的荧光探针[J]. 化学进展, 2021, 33(9): 1461-1472.
[13] 赵丹, 王昌涛, 苏磊, 张学记. 荧光纳米材料在病原微生物检测中的应用[J]. 化学进展, 2021, 33(9): 1482-1495.
[14] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
[15] 谢勇, 韩明杰, 徐钰豪, 熊晨雨, 王日, 夏善红. 荧光内滤效应在环境检测领域的应用[J]. 化学进展, 2021, 33(8): 1450-1460.