English
新闻公告
More
化学进展 2011, Vol. 23 Issue (01): 254-260 前一篇   

• 综述与评论 •

海洋环境中的天然溴代有机物

阴永光, 刘景富, 江桂斌   

  1. 中国科学院生态环境研究中心 环境化学与生态毒理学国家重点实验室 北京 100085
  • 收稿日期:2010-04-01 修回日期:2010-08-01 出版日期:2011-01-20 发布日期:2011-09-02
  • 作者简介:e-mail: jfliu@rcees.ac.cn
  • 基金资助:

    国家自然科学基金项目(No.20907062)和国家杰出青年科学基金项目(No.21025729)资助

Naturally Occurring Organobromine Compounds in Marine with Environmental Concern

Yin Yongguang, Liu Jingfu, Jiang Guibin   

  1. State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
  • Received:2010-04-01 Revised:2010-08-01 Online:2011-01-20 Published:2011-09-02

近些年来,环境中的溴代有机污染物逐渐成为人们关注的热点。最近的研究发现,海洋环境中的一些溴代有机物并非来自于人为污染,而是来自于天然合成。海洋环境中存在的这些天然溴代有机物引起了人们极大的兴趣。这些天然溴代有机物在海洋生物、底泥、海水以及大气中广泛存在,并可在海洋哺乳动物体内富集。毒理学研究表明,一些天然溴代有机物具有一定的生物活性与毒性。因此,深入研究天然溴代有机物的环境分布与环境影响具有重要的意义。本文介绍了代表性天然溴代有机物的环境分布、毒性及其可能的来源,并对其未来研究方向和趋势作了展望。

In recent years,the issue of brominated organic pollutants in environment is becoming a great concern.It was found that some of the organobromine compounds from marine environment are naturally occurring rather than anthropogenic.These naturally occurring organobromine compounds are widely present in various marine media including marine organism,sediment,seawater and atmosphere.Biomagnification of some naturally occurring organobromine compounds in marine mammals was demonstrated recently.In addition,many naturally occurring organobromine compounds have been suggested to exhibit biological activity or toxicity.Therefore,it is very important to study in-depth the environmental distribution and impact of naturally occurring organobromine compounds.This review summarizes the diversity,environmental behavior,and toxicity of naturally occurring organobromine compounds.Additionally,the possible sources of naturally occurring organobromine compounds are remarked and future prospects in this field are discussed.

中图分类号: 

()

[1] Teuten E L, Reddy C M. Environ. Pollut., 2007, 145: 668—671
[2] Vetter W. Rev. Environ. Contam. Toxicol., 2006, 188: 1—57
[3] Keppler F, Eiden R, Niedan V, et al. Nature, 2000, 403: 298—301
[4] Moore R M. Environ. Sci. Technol., 2008, 42: 1933—1937
[5] Keppler F, Borchers R, Pracht J, et al. Environ. Sci. Technol., 2002, 36: 2479—2483
[6] Gribble G W. Chem. Soc. Rev., 1999, 28: 335—346
[7] Boyle J L, Lindsay R C, Stuiber D A. J. Aquatic Food Prod. Tech., 1992, 1: 43—63
[8] Da Silva V M, Lopes W A, de Andrade J B, et al. Quim. Nova, 2007, 30: 629—635
[9] Boyle J L, Lindsay R C, Stuiber D A. J. Aquatic Food Prod. Tech., 1993, 2: 75—112
[10] Oliveira A S, Silva V M, Veloso M C C, et al. Anais Da Academia Brasileira De Ciencias, 2009, 81: 165—172
[11] Whitfield F B, Helidoniotis F, Shaw K J, et al. J. Agric. Food Chem., 1997, 45: 4398—4405
[12] Boyle J L, Lindsay R C, Stuiber D A. J. Food Sci., 1992, 57: 918—922
[13] Whitfield F B, Helidoniotis F, Shaw K J, et al. J. Agric. Food Chem., 1999, 47: 2367—2373
[14] Chung H Y, Ma W C J, Kim T S. J. Agric. Food Chem., 2003, 51: 6752—6760
[15] Ma W C J, Chung H Y, Ang P O, et al. J. Agric. Food Chem., 2005, 53: 2133—2139
[16] Reineke N, Biselli S, Franke S, et al. Arch. Environ. Contam. Toxicol., 2006, 51: 186—196
[17] Vetter W, Haase-Aschoff P, Rosenfelder N, et al. Environ. Sci. Technol., 2009, 43: 6131—6137
[18] 刘汉霞(Liu H X), 张庆华(Zhang Q H), 江桂斌(Jiang G B) 等. 化学进展(Progress in Chemistry), 2005, 17: 554—562
[19] Cameron G M, Stapleton B L, Simonsen S M, et al. Tetrahedron, 2000, 56: 5247—5252
[20] Fu X, Hossain M B, Schmitz F J, et al. J. Org. Chem., 1997, 62: 3810—3819
[21] Kuniyoshi M, Yamada K, Higa T. Experientia, 1985, 41: 523—524
[22] Haglund P S, Zook D R, Buser H R, et al. Environ. Sci. Technol., 1997, 31: 3281—3287
[23] Asplund L, Athanasiadou M, Sjdin A, et al. Ambio, 1999, 28: 67—76
[24] Kierkegaard A, Sellstrm U, Bignert A, et al. Organohalogen Compounds, 1999, 40: 367—370
[25] Olsson A, Ceder K, Bergman A, et al. Environ. Sci. Technol., 2000, 34: 2733—2740
[26] Vetter W, Stoll E, Garson M J, et al. Environ. Sci. Technol., 2002, 21: 2014—2019
[27] Verreault J, Gabrielsen G W, Chu S, et al. Environ. Sci. Technol., 2005, 39: 6021—6028
[28] Stapleton H M, Keller J M, Schantz M M, et al. Anal. Bioanal. Chem., 2007, 387: 2365—2379
[29] Lacorte S, Ikonomou M G, Fischer M. J. Chromatogr. A, 2010, 1217: 337—347
[30] Marsh G, Athanasiadou M, Bergman A, et al. Environ. Sci. Technol., 2004, 38: 10—18
[31] Kierkegaard A, Bignert A, Sellstrom U, et al. Environ. Pollut., 2004, 130: 187—198
[32] Wan Y, Wiseman S, Chang H, et al. Environ. Sci. Technol., 2009, 43: 7536—7542
[33] Teuten E L, Xu L, Reddy C M. Science, 2005, 307: 917—920
[34] Malmvarn A, Marsh G, Kautsky L, et al. Environ. Sci. Technol., 2005, 39: 2990—2997
[35] Malmvarn A, Zebühr Y, Kautsky L, et al. Chemosphere, 2008, 72: 910—916
[36] Unger M, Asplund L, Haglund P, et al. Environ. Sci. Technol., 2009, 43: 8245—8250
[37] Pena-Abaurrea M, Weijs L, Ramos L, et al. Chemosphere, 2009, 76: 1477—1482
[38] Letcher R J, Gebbink W A, Sonne C, et al. Environ. Int., 2009, 35: 1118—1124
[39] Losada S, Roach A, Roosens L, et al. Environ. Int., 2009, 35: 1142—1149
[40] Weijs L, Losada S, Das K, et al. Environ. Int., 2009, 35: 893—899
[41] Kelly B C, Ikonomou M G, Blair J D, et al. Environ. Sci. Technol., 2008, 42: 7069—7077
[42] Haraguchi K, Hisamichi Y, Kotaki Y, et al. Environ. Sci. Technol., 2009, 43: 2288—2294
[43] Covaci A, Voorspoels S, Vetter W, et al. Environ. Sci. Technol., 2007, 41: 5237—5244
[44] Malmberg T, Athanasiadou M, Marsh G, et al. Environ. Sci. Technol., 2005, 39: 5342—5348
[45] Hamers T, Kamstra J H, Sonneveld E, et al. Mol. Nutr. Food Res., 2008, 52: 284—298
[46] Stapleton H M, Kelly S M, Pei R, et al. Environ. Health Perspect., 2009, 117: 197—202
[47] Ueno D, Darling C, Alaee M, et al. Environ. Sci. Technol., 2008, 42: 1657—1664
[48] Covaci A, Losada S, Roosens L, et al. Environ. Sci. Technol., 2008, 42: 8654—8660
[49] Vetter W, Hiebl J, Oldham N J. Environ. Sci. Technol., 2001, 35: 4157—4162
[50] Hiebl J, Melcher J, Gundersen H, et al. J. Agric. Food Chem., 2006, 54: 2652—2657
[51] Herzke D, Berger U, Kallenborn R, et al. Chemosphere, 2005, 61: 441—449
[52] Vetter W, von der Recke R, Herzke D, et al. Environ. Int., 2007, 33: 17—26
[53] Vetter W, Rosenfelder N, Kraan S, et al. Chemosphere, 2008, 73: 7—13
[54] Vetter W, Janussen D. Environ. Sci. Technol., 2005, 39: 3889—3895
[55] Vetter W, Elke S. Eur. Food Res. Technol., 2002, 215: 523—528
[56] Vetter W, Schlabach M, Kallenborn R. Fresenius Environ. Bull., 2002, 11: 170—175
[57] Vetter W, Wu J. Chemosphere, 2003, 52: 423—431
[58] Flodin C, Whitfield F B. Phytochem., 2000, 53: 77—80
[59] Tittlemier S A. J. Agric. Food Chem., 2004, 52: 2010—2015
[60] Haraguchi K, Hisamichi Y, Endo T, et al. Arch. Environ. Contam. Toxicol., 2006, 51: 135—141
[61] Teuten E L, Pedler B E, Hangsterfer A N, et al. Environ. Pollut., 2006, 144: 336—344
[62] Tittlemier S A, Fisk A T, Hobson K A, et al. Environ. Pollut., 2002, 116: 85—93
[63] Vetter W, Gaul S, Olbrich D, et al. Chemosphere, 2007, 66: 2011—2018
[64] Tittlemier S A, Braekevelt E, Halldorson T, et al. Chemosphere, 2004, 57: 1373—1381
[65] Tittlemier S, Borrell A, Duffe J, et al. Arch. Environ. Contam. Toxicol., 2002, 43: 244—255
[66] Reddy C M, Xu L, O'Neil G W, et al. Environ. Sci. Technol., 2004, 38: 1992—1997
[67] Pangallo K, Nelson R K, Teuten E L, et al. Chemosphere, 2008, 71: 1557—1565
[68] Tittlemier S A., Simon M, Jarman W M, et al. Environ. Sci. Technol., 1999, 33: 26—33
[69] Melcher J, Janussen D, Garson M J, et al. Arch. Environ. Contam. Toxicol., 2007, 52, 512—518
[70] Haglund P, Malmvarn A, Bergek S, et al. Environ. Sci. Technol., 2007, 41: 3069—3074
[71] Marsh G, Athanasiadou M, Athanassiadis I, et al. Environ. Sci. Technol., 2005, 39: 8684—8690
[72] Maruya K A. Chemosphere, 2003, 52: 409—413
[73] Peters L, Konig G M, Terlau H, et al. J. Nat. Prod., 2002, 65: 1633—1637
[74] Benkendorff K, Bremner J B, Davis A R. Molecules, 2001, 6: 70—78
[75] Shin J, Seo Y, Cho K W, et al. J. Nat. Prod., 1999, 62: 647—649
[76] Kammann U, Vobach M, Wosniok W. Arch. Environ. Contam. Toxicol., 2006, 51: 97—102
[77] Szymanska J A, Bruchajzer E, Piotrowski J K. Int. J. Occup. Environ. Health, 1995, 8: 245—254
[78] Casillas E, Myers M S. Comp. Biochem. Physiol. C, 1989, 93: 43—48
[79] Bruchajzer E, Szymanska J A, Piotrowski J K. Toxicol. Lett., 2002, 134: 245—252
[80] Suzuki G, Takigami H, Watanabe M, et al. Environ. Sci. Technol., 2008, 42: 1794—1800
[81] Hassenklover T, Predehl S, Pilli J, et al. Aquat. Toxicol., 2006, 76: 37—45
[82] Ucan-Marin F, Arukwe A, Mortensen A, et al. Toxicol. Sci., 2009, 107: 440—450
[83] Ucan-Marin F, Arukwe A, Mortensen A S, et al. Environ. Sci. Technol., 2010, 44: 497—504
[84] Mercado-Feliciano M, Bigsby R M. Environ. Health Perspect., 2008, 16: 1315—1321
[85] Hamers T, Kamstra J H, Sonneveld E, et al. Toxicol. Sci., 2006, 92: 157—173
[86] Dingemans M M L, de Groot A, van Kleef R G D M, et al. Environ. Health Perspect., 2008, 116: 637—643
[87] Canton R F, Sanderson J T, Nijmeijer S, et al. Toxicol. Appl. Pharmacol., 2006, 216: 274—281
[88] Canton R F, Sanderson J T, Letcher R J, et al. Toxicol. Sci., 2005, 88: 447—455
[89] Canton R F, Scholten D E A, Marsh G, et al. Toxicol. Appl. Pharmacol., 2008, 227: 68—75
[90] Kojima H, Takeuchi S, Uramaru N, et al. Environ. Health Perspect., 2009, 117: 1210—1218
[91] Tittlemier S A, Kennedy S W, Hahn M E, et al. Environ. Toxicol. Chem., 2003, 22: 1622—1631
[92] Vetter W, Hahn M E, Tomy G, et al. Arch. Environ. Contam. Toxicol., 2004, 48: 1—9
[93] Tittlemier S A, Duffe J A, Dallaire A D, et al. Environ. Toxicol. Chem., 2003, 22: 1497—1506
[94] Murphy C D. J. Appl. Microbiol., 2003, 94: 539—548
[95] Higa T, Fujiyama T, Scheuer P J. Comp. Biochem. Physiol., 1980, 65: 525—530
[96] Sheikh Y M, Djerassi C. Experientia, 1975, 31: 265—392
[97] Calza P, Massolino C, Pelizzetti E, et al. Sci. Total Environ., 2008, 398: 196—202
[98] Richardson S D, Thruston A D, Rav-Acha C, et al. Environ. Sci. Technol., 2003, 37: 3782—3793

[1] 周晋, 陈鹏鹏. 二维纳米材料的改性及其环境污染物治理方面的应用[J]. 化学进展, 2022, 34(6): 1414-1430.
[2] 孙义民, 李厚燊, 陈振宇, 王东, 王展鹏, 肖菲. MXene在电化学传感器中的应用[J]. 化学进展, 2022, 34(2): 259-271.
[3] 张巍, 谢康, 汤云灏, 秦川, 成珊, 马英. 过渡金属基MOF材料在选择性催化还原氮氧化物中的应用[J]. 化学进展, 2022, 34(12): 2638-2650.
[4] 朱本占, 张静, 唐苗, 黄春华, 邵杰. 致癌性卤代醌类消毒副产物造成 DNA 损伤的分子机理研究[J]. 化学进展, 2022, 34(1): 227-236.
[5] 谢勇, 韩明杰, 徐钰豪, 熊晨雨, 王日, 夏善红. 荧光内滤效应在环境检测领域的应用[J]. 化学进展, 2021, 33(8): 1450-1460.
[6] 雷雨洋, 李方方, 欧阳洁, 李敏杰, 郭良宏. 浙江地区抗生素残留的环境分布特征及来源分析[J]. 化学进展, 2021, 33(8): 1414-1425.
[7] 张雨竹, 詹菁, 刘倩, 周群芳, 江桂斌. 大气细颗粒物引发的神经毒性和分子机理[J]. 化学进展, 2021, 33(5): 713-725.
[8] 赵超, 蔡宗苇. 基于质谱成像和组学分析的环境毒理研究[J]. 化学进展, 2021, 33(4): 503-511.
[9] 张安睿, 艾玥洁. 共价有机框架(COFs)材料的结构控制及其在环境化学中的应用[J]. 化学进展, 2020, 32(10): 1564-1581.
[10] 朱本占, 沈忱, 盛治国. 膜受体介导双酚A低剂量内分泌干扰效应的分子机制[J]. 化学进展, 2019, 31(1): 167-179.
[11] 张冰洁, 刘倩, 周群芳, 张建清, 江桂斌. 纳米银的神经毒理学效应[J]. 化学进展, 2018, 30(9): 1392-1402.
[12] 丁星, 杨祥龙, 熊中亮, 陈浩, 张礼知. 铋系光催化剂去除环境污染物[J]. 化学进展, 2017, 29(9): 1115-1126.
[13] 王亚韡, 王莹, 江桂斌. 短链氯化石蜡的分析方法、污染现状与毒性效应[J]. 化学进展, 2017, 29(9): 919-929.
[14] 李忠民, 郭良宏. 氟调醇的环境污染与毒理学研究[J]. 化学进展, 2016, 28(7): 993-1005.
[15] 向垒, 孙腾飞, 莫测辉, 李彦文, 蔡全英, 李慧. 季铵盐类化合物环境问题研究进展[J]. 化学进展, 2016, 28(5): 727-736.
阅读次数
全文


摘要