English
新闻公告
More
化学进展 2010, Vol. 22 Issue (12): 2338-2352 前一篇   后一篇

• 综述与评论 •

基于荧光共轭聚合物的金属离子检测

苗丽坤2, 刘兴奋1,2, 范曲立1,2, 黄维1,2   

  1. 1. 江苏省有机电子与信息显示重点实验室 南京 210046;
    2. 南京邮电大学 信息材料与纳米技术研究院与材料科学与工程学院 南京 210046
  • 出版日期:2010-12-24 发布日期:2010-11-04
  • 作者简介:e-mail:iamwhuang@njupt.edu.cn; iamxfliu@njupt.edu.cn
  • 基金资助:

    国家自然科学基金资助项目(No. 20874048)、国家重点基础研究发展计划(973)项目(No. 2009CB930601)、江苏省优秀创新团队项目(No.TJ207035)、江苏省自然科学基金项目(No. BK2008452、BK2008453)和南京邮电大学科研启动基金项目(NY 207037)资助

Detection of Metal Ions Based on Conjugated Fluorescent Polymers*

Miao Likun2, Liu Xingfen1,2, Fan Quli1,2, Huang Wei1,2   

  1. 1. Jiangsu Key Laboratory for Organic Electronics & Information Displays (KLOEID), Nanjing 210046, China;
    2. Institute of Advanced Materials (IAM) and School of Materials Science and Engineering, Nanjing University of Posts & Telecommunications, Nanjing 210046, China
  • Online:2010-12-24 Published:2010-11-04

以聚乙炔、聚芴、聚噻吩、聚苯撑为代表的荧光共轭聚合物,由于具有独特的光学性能、自组装性能和结构与性能的可调控性,可作为优异的光学传感材料。利用其具有较高摩尔消光系数和荧光量子产率的特点,可设计具有较高灵敏度和选择性的传感器,这已成为生物传感领域的研究热点。以荧光共轭聚合物为基础的金属离子检测,最初是以非水溶性的共轭聚合物为主,通过金属离子与聚合物链上特定基团(如吡啶、冠醚)的结合引起的聚合物荧光性质的变化可实现对某些离子的检测。在共轭聚合物主链上引入亲水性侧链,可大大增强共轭聚合物的水溶性,为金属离子的生物传感检测提供了新的思路,例如可引入能与金属离子结合的生物分子(如DNA、糖基等)来设计传感策略,进一步提高检测的特异性和灵敏度。本文综述了近年来以非水溶性和水溶性荧光共轭聚合物为传感材料,对具有重要生物学意义的重金属离子(Hg2+、Pb2+)、过渡金属离子(Cu2+、Eu3+、Ni2+、Fe3+、Fe2+、Ru3+、Ag+)和碱金属离子(K+、Na+、Li+)进行高灵敏度检测方面的研究进展,并对该领域的发展前景进行了展望。

Conjugated fluorescent polymers (CPs) such as polyacetylene, polyfluorene, polythiophene and polyphenylene derivatives have unique optical properties, self-assembly performance and regulable structure and properties. They have been used as excellent optical sensing materials to develop high sensitive and selective sensors by using the large extinction coefficient and high fluorescence quantum yield of conjugated polymers, which have been a research hot spot in the field of biosensor. Detection of metal ions based on the conjugated polymer primarily relies on the non-water-soluble conjugated polymers. Metal ions can be detected by investigating the changes of the optical characteristics of the polymers induced by the combination of metal ions with some units such as bipyridyl and crown ethers on the polymer chains. Water solublity of conjugated polymers can be improved by appending hydrophilic side chains on the main chain of polymer, which provide many new ideas for the design of metal ions biosensors. For example, some biomolecules such as DNA and glucopyranose can be used to design schemes in order to improve the sensitivity and selectivity for the detection of metal ions. This review summarizes the new progress of highly sensitive detection of heavy metal ions (Hg2+,Pb2+), transition-metal ions (Cu2+,Eu3+,Ni2+,Fe3+,Fe2+,Ru3+,Ag+) and alkali metal ions (K+,Na+,Li+) based on non-water-soluble and water-soluble conjugated fluorescent polymers. As well as the development prospects of the field is included.

Contents
1 Introduction
2 Detection of metal ions based on non-water-soluble conjugated fluorescent polymers
2.1 Detection of heavy metal ions including Hg2+、Pb2+
2.2 Detection of transition-metal ions including Cu2+、Eu3+、Ni2+、Fe3+、Ag+
2.3 Detection of alkali metal ions including K+、Na+、Li+
3 Detection of metal ions based on water-soluble conjugated fluorescent polymers
3.1 Detection of heavy metal ions including Hg2+、Pb2+
3.2 Detection of transition-metal ions including Cu2+、Ni2+、Ru3+、Fe2+
3.3 Detection of alkalie metal ions including K+
4 Summary and outlook

中图分类号: 

()


[1] Swager T M. Acc. Chem. Res., 1998, 31: 201—207

[2] McQuade D T, Pullen A E, Swager T M. Chem. Rev., 2000, 100: 2537—2574

[3] Zhou Q, Swager T M. J. Am. Chem. Soc., 1995, 117: 7017—7018

[4] Leclerc M. Adv. Mater., 1999, 11: 1491—1498

[5] Ho H A, Bera—Aberem M, Leclerc M. Chem. Eur. J., 2005, 11: 1718—1724

[6] Thomas III S W, Joly G D, Swager T M. Chem. Rev., 2007,107: 1339—1386

[7] Liu B, Bazan G C. Chem. Mater., 2004, 16: 4467—4476

[8] 刘兴奋(Liu X F),王丽华(Wang L H),宋世平(Song S P), 樊春海(Fan C H), 黄维(Huang W). 化学进展(Progress in Chemistry), 2008, 20(9): 1375—1384

[9] 傅妮娜(Fu N N),赵保敏(Zhao B M),汪联辉(Wang L H), 黄维(Huang W). 南京邮电大学学报(自然科学版)(Journal of Nanjing University of Posts and Telecommunications (Naturnal Science)), 2008, 28(1): 70—76

[10] Fan L J, Zhang Y, Murphy C B, Angell S E, Parkera M F L, Flynn B R, Jones W E. Jr. Coordination Chemistry Reviews., 2009, 253: 410—422

[11] Hou Q, Xu Y, Yang W, Peng J, Cao Y. J. Mater. Chem., 2002, 12: 2887—2892

[12] Nguyen T, Doan V, Schwartz J. Chem. Phys., 1999, 110: 4068—4078

[13] Kim I B, Erdogan B, WiIson J N, Bunz U H F. Chem. sEur. J., 2004, 10: 6247—6254

[14] Zou Y P, Wan M X, Sang G Y, Ye M F, Li Y F. Adv. Funct. Mater., 2008, 18: 2724—2732

[15] Zhu L N, Yang M, Zhong C, Yang C L, Qin J G. Polymer, 2009, 50: 5422—5426

[16] Huang X B, Xu Y, Zheng L F, Meng J, Cheng Y X. Polymer, 2009, 50: 5996—6000

[17] Wang B, Wasielewski M R. J. Am. Chem. Soc., 1997, 119: 12—21

[18] Zhou Q, Swager T M. J. Am. Chem. Soc., 1995, 117: 12593—12602

[19] Huang H, Wang K, Tan W, An D, Yang X, Huang S, Zhai Q, Zhou L, Jin Y. Angew. Chem. Int. Ed., 2004, 43: 5635—5638

[20] Li Z A, Lou X D, Yu H B, Li Z, Qin J G. Macromolecules, 2008, 41: 7433—7439

[21] Zhou X H, Yan J C, Pei J. Macromolecules, 2004, 37: 7078—7080

[22] Zeng D L, Cheng J G, Ren S J, Sun J, Zhong H L, Xu E J, Du J P, Fang Q. Reactive & Functional Polymers, 2008, 68: 1715—1721

[23] Ramachandran G, Smith T A, Gómez D, Ghiggino K P. Synth. Met., 2005, 152: 17—20

[24] Guo Z Q, Zhu W H, Tian H. Macromolecules, 2010, 43: 739—744

[25] Zhang Y, Murphy C B, Jones W E. Macromolecules, 2002, 35: 630—636

[26] Murphy C B, Zhang Y, Troxler T, Ferry V, Martin J J, Jones W E Jr. J. Phys. Chem. B, 2004, 108: 1537—1543

[27] Liu X Q, Zhou X, Shu X, Zhu J. Macromolecules, 2009, 42: 7634—7637

[28] Zhou G, Qian G, Ma L, Cheng Y, Xie Z, Wang L, Jing X, Wang F. Macromolecules, 2005, 38: 5416—5424

[29] Na J, Kim Y, Park W H, Lee T S. J. Polym. Sci. Part A: Polym. Chem., 2004, 42: 2444—2450

[30] Vetrichelvan M, Valiyaveettil S. Chem. sEur. J., 2005, 11: 5889—5898

[31] Tong H, Wang L X, Jing X B, Wang F S. Macromolecules, 2002, 35: 7169—7171

[32] Tong H, Wang L, Jing X, Wang F. Macromol. Rapid Commun., 2002, 23: 877—880

[33] Baskar C, Lai Y H, Valiyaveettil S. Macromolecules, 2001, 34: 6255—6260

[34] Kim J, McQuade D T, McHugh S K, Swager T M. Angew. Chem. Int. Ed., 2000, 39: 3868—3872

[35] Béra-Abérem M, Ho H A, Leclerc M. Tetrahedron, 2004, 60: 11169—11173

[36] Liu H W, Wang S, Luo Y H, Tang W H, Yu G, Li L, Chen C F, Liu Y Q, Xi F. J. Mater. Chem., 2001, 11, 3063—3067

[37] Crawford K B, Goldfinger M B, Swager T M. J. Am. Chem. Soc., 1998, 120: 5187—5192

[38] Chen Z, Xue C, Shi W, Luo F T, Green S, Chen J, Liu H. Anal. Chem., 2004, 76: 6513—6518

[39] Thomas I S, Joly G, Swager T M. Chem. Rev., 2007, 107: 1339—1386

[40] Liu B, Bazan G. Chem. Mater., 2004, 16: 4467—4476

[41] Bunz U H F. Chem. Rev., 2000, 100: 1605—1644

[42] Achyuthan K, Bergstedt T, Chen L, Jones R, Kumaraswamy S, Kushon S. J. Mater. Chem., 2005, 15: 2648—2656

[43] Gaylord B, Heeger A, Bazan G. Proc. Natl. Acad. Sci. USA., 2002, 99: 10954—10957

[44] He F, Tang Y L, Wang S, Li Y, Zhu D. J. Am. Chem. Soc., 2005, 127: 12343—12346

[45] Kim I B, Bunz U H F. J. Am. Chem. Soc., 2006, 128: 2818—2819

[46] Kim I B, Phillips R, Bunz U H F. Macromolecules, 2007, 40: 814—817

[47] Tang Y L, He F, Yu M, Feng F, An L, Sun H, Wang S, Li Y, Zhu D B. Rapid Commun., 2006, 27: 389—392

[48] Liu X F, Tang Y L, Wang L H, Zhang J, Song S P, Fan C H, Wang S. Adv. Mater., 2007, 19: 1471—1474

[49] Lu H Y, Tang Y L, Xu W, Zhang D Q, Wang S, Zhu D B. Macromol. Rapid Commun., 2008, 29: 1467—1471

[50] Fang Z, Pu K Y, Liu B. Macromolecules, 2008, 41: 8380—8387

[51] Qin C J, Wu X F, Gao B X, Tong H, Wang L X. Macromolecules, 2009, 42: 5427—5429

[52] Liu X Q, Zhu J. J. Phys. Chem. B, 2009, 113: 8214—8217

[53] Balamurugan A, Reddy M L P, Jayakannan M. Journal of Polymer Science: Part A: Polymer Chemistry, 2009, 47: 5144—5157

[54] Kim I B, Anna D, James G, Bunz U H F. Macromolecules, 2005, 38: 4560—4562

[55] Chen L, McBranch D W, Wang H L, Helgeson R, Wudl F, Whitten D G. Proc. Natl. Acad. Sci. USA, 1999, 96: 12287—12292

[56] Chen Y G, Zhao D, He Z K, Ai X P. Spectrochimica Acta Part A, 2007, 66: 448—452

[57] Xing C F, Shi Z Q, Yu M H, Wang S. Polymer, 2008, 49: 2698—2703

[58] Smith R, Tennyson A, Lim M, Lippard S. Org. Lett., 2005, 7: 3573—3575

[59] Chen Y, Fan Q L, Wang P, Zhang B, Huang Y Q, Zhang G W, Lu X M, Chan H S O, Huang W. Polymer, 2006, 47: 5228—5232

[60] Zhang M, Lu P, Ma Y, Shen J. J. Phy. Chem. B, 2003, 107: 6535—6538

[61] Wang B Y, Liu X Y, Hu Y L, Su Z X. PolymInt., 2009, 58: 703—709

[62] Harrison B S, Ramey M B, Reynoles J R, Schanze K S. J. Am. Chem. Soc., 2000, 122: 8561—8562

[63] Li N J, Xu Q F, Xia X W, Wang L H, Lu J M, Wen X W. Materials Chemistry and Physics, 2009, 114: 339—343

[64] Fan Q L, Zhou Y, Lu X M, Hou X Y, Huang W. Macromolecules, 2005, 38: 2927—2936

[65] 范曲立(Fang Q L), 陈轶(Chen Y), 卢晓梅(Lu X M), 黄艳琴(Huang Y Q), 张广维(Zhang G W), 高志强(Gao Z Q). 南京邮电大学学报(自然科学版)(Journal of Nanjing University of Posts and Telecommunications (Naturnal Science)), 2008, 28(1): 64—69

[66] Liu B, Yu W, Pei J, Liu S, Lai Y H, Huang W. Macromolecules, 2001, 34: 7932—7940

[67] Davis J T. Angew. Chem. Int. Ed., 2004, 43: 668—698

[68] Walmsley J A, Burnett J F. Biochemistry, 1999, 38: 14063—14068

[69] Ho H A, Leclerc M. J. Am. Chem. Soc., 2004, 126: 1384—1387

[70] He F, Tang Y L, Wang S, Li Y L, Zhu D B. Am. Chem. Soc., 2005, 127: 12343—12346

[71] Ueyama H, Takagi M, Takenake S. J. Am. Chem. Soc., 2002, 124: 14286—14287

[72] Gaylord B, Heeger A J, Bazan G. J. Am. Chem. Soc., 2003, 125: 896—900

[1] 陈戈慧, 马楠, 于帅兵, 王娇, 孔金明, 张学记. 可卡因免疫及适配体生物传感器[J]. 化学进展, 2023, 35(5): 757-770.
[2] 王克青, 薛慧敏, 秦晨晨, 崔巍. 二苯丙氨酸二肽微纳米结构的可控组装及应用[J]. 化学进展, 2022, 34(9): 1882-1895.
[3] 张锦辉, 张晋华, 梁继伟, 顾凯丽, 姚文婧, 李锦祥. 零价铁去除水中(类)金属(含氧)离子技术发展的黄金十年(2011-2021)[J]. 化学进展, 2022, 34(5): 1218-1228.
[4] 赵惠, 胡文博, 范曲立. 双光子荧光探针在生物传感中的应用[J]. 化学进展, 2022, 34(4): 815-823.
[5] 高耕, 张克宇, 王倩雯, 张利波, 崔丁方, 姚耀春. 金属草酸盐基负极材料——离子电池储能材料的新选择[J]. 化学进展, 2022, 34(2): 434-446.
[6] 孙华悦, 向宪昕, 颜廷义, 曲丽君, 张光耀, 张学记. 基于智能纤维和纺织品的可穿戴生物传感器[J]. 化学进展, 2022, 34(12): 2604-2618.
[7] 彭倩, 张晶晶, 房新月, 倪杰, 宋春元. 基于表面增强拉曼光谱技术的心肌生物标志物检测[J]. 化学进展, 2022, 34(12): 2573-2587.
[8] 郑明心, 谭臻至, 袁金颖. 光响应Janus粒子体系的构建与应用[J]. 化学进展, 2022, 34(11): 2476-2488.
[9] 谢勇, 韩明杰, 徐钰豪, 熊晨雨, 王日, 夏善红. 荧光内滤效应在环境检测领域的应用[J]. 化学进展, 2021, 33(8): 1450-1460.
[10] 许惠凤, 董永强, 朱希, 余丽双. 新型二维材料MXene在生物医学的应用[J]. 化学进展, 2021, 33(5): 752-766.
[11] 于帅兵, 王召璐, 庞绪良, 王蕾, 李连之, 林英武. 多肽基金属离子传感器[J]. 化学进展, 2021, 33(3): 380-393.
[12] 刘园园, 郭芸, 罗晓刚, 刘根炎, 孙琦. 近红外荧光探针检测金属离子、小分子和生物大分子[J]. 化学进展, 2021, 33(2): 199-215.
[13] 孙亚芳, 周子平, 舒桐, 钱立生, 苏磊, 张学记. 多彩金纳米簇:从结构到生物传感和成像[J]. 化学进展, 2021, 33(2): 179-187.
[14] 吴金柯, 王建军, 戴礼兴, 孙东豪, 陈嘉嘉. 金属配位聚氨酯[J]. 化学进展, 2021, 33(12): 2188-2202.
[15] 杨爽, 杨贤鹏, 王宝俊, 王蕾. 基于核酸的纸基荧光生物传感器的设计及应用[J]. 化学进展, 2021, 33(12): 2309-2315.