English
新闻公告
More
化学进展 2010, Vol. 22 Issue (12): 2328-2337 前一篇   后一篇

• 综述与评论 •

肽基纳米材料及其应用

黄仁亮1, 齐崴1,2, 姜楠1, 苏荣欣1,2, 何志敏1,2   

  1. 1. 天津大学化工学院化学工程研究所 天津 300072;
    2. 化学工程联合国家重点实验室(天津大学) 天津 300072
  • 出版日期:2010-12-24 发布日期:2010-11-04
  • 作者简介:e-mail:qiwei@tju.edu.cn
  • 基金资助:

    国家自然科学基金项目 (No.20976125、 20806057、 31071509、31071509)、天津市自然科学基金项目(No.10JCYBJC05100)、 教育部科学技术研究计划重点项目(No.108031)、新世纪优秀人才支持计划项目(2008)、 国家高技术发展计划(863)项目(No.2008AA10Z318)和高等学校学科创新引智计划(111计划)(No.B06006)

Peptide Based Nanomaterials and Their Technological Applications

Huang Renliang1, Qi Wei1,2, Jiang Nan1, Su Rongxin1,2, He Zhimin1,2   

  1. 1. Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University Tianjin 30007;
    2. State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
  • Online:2010-12-24 Published:2010-11-04

近年来,肽类超分子自组装合成纳米材料受到了广泛研究和关注,已成为纳米材料科学研究的前沿领域之一。肽基纳米材料因其良好的生物相容性以及结构和功能的多样性,在材料学、组织工程、生物工程及药物传递等方面展示出巨大的应用潜力。本文综述了肽类自组装纳米材料制备的最新研究进展,重点介绍了疏水性二肽、类表面活性剂多肽、Aβ多肽片段、烷基链修饰多肽等通过非共价键作用自组装形成的不同结构的纳米材料,包括纳米管、纳米纤维、纳米囊/球、纳米水凝胶等;同时,介绍了多肽自组装机理模型及其分子动力学模拟方面取得的研究成果;最后总结了肽基纳米材料在金属/半导体材料、生物传感器、组织修复材料及药物传递等领域的应用现状及今后重点研究的方向。

The self-assembled peptide nanomaterials have been the focus of considerable research in recent years. Due to their good biocompatibility and the structure diversity, these materials are extremely attractive as building blocks for various applications such as material science, tissue engineering, bioengineering, and drug delivery. Firstly, this paper reviews the recent research concerning the self-assembly of peptides and their derivates into nanomaterials, including hydrophobic dipeptides, surfactant-like peptides, amyloid peptide fragments, and peptide-amphiphiles. Through the molecular self-assembling, these peptide molecules are assembled into various nanometer-scale structures and then further orgnaized to form nanotuber, nanofiber, nanovesicle, nanosphere and nanohydrogel. Meanwhile, the mechanism for the fomation of peptide assemblies and molecular dynamics simulation of the peptide self-asssembly are discussed. Finally, we introduced the application progress of the peptide-based nanomaterials, including the templates for the fabrication of metal/semiconductor materials, elements in biosensors, scaffolds for tissue engineering and regeneration, and carriers for drug delivery.

Contents
1 Introduction
2 Preparation of peptide based nanomaterials
2.1 Dipeptides and their derivates
2.2 Linear peptides and their derivates
2.3 Cyclic peptides
2.4 Proteins
3 The mechanisms and molecular dynamics of the peptide self-asssembly
4 Applications of peptide based nanomaterials
4.1 Metal/semiconductor materials
4.2 Biosensors
4.3 Tissue engineering and regeneration
4.4 Drug delivery and release system
5 Conclusion

中图分类号: 

()


[1] Gao X Y, Matsui H. Adv. Mater., 2005, 17(17): 2037—2050

[2] Scanlon S, Aggeli A. Nano Today, 2008, 3(3/4): 22—30

[3] Yang Y L, Khoe U, Wang X M, Horii A, Yokoi H, Zhang S G. Nano Today, 2009, 4(2): 193—210

[4] 孟庆斌(Meng Q B), 刘克良(Liu K L). 化学进展(Prog. Chem.), 2009, 21(11): 2411—2423

[5] Ghadiri M R, Granja J R, Milligan R A, McRee D E, Khazanovich N. Nature, 1993, 366(6453): 324—327

[6] Garcia-Fandino R, Granja J R, D'Abramo M, Orozco M. J. Am. Chem. Soc., 2009, 131(43): 15678—15686

[7] Reches M, Gazit E. Science, 2003, 300(5619): 625—627

[8] Song Y, Challa S, Medforth C, Qiu Y, Watt R, Pe A D, Miller J, Swol F, Shelnutt J. Chem. Commun., 2004, 1044—1045

[9] Adler-Abramovich L, Aronov D, Beker P, Yevnin M, Stempler S, Buzhansky L, Rosenman G, Gazit E. Nat. Nanotechnol., 2009, 4(12): 849—854

[10] Reches M, Gazit E. Nat. Nanotechnol., 2006, 1(3): 195—200

[11] Hendler N, Sidelman N, Reches M, Gazit E, Rosenberg Y, Richter S. Adv. Mater., 2007, 19(11): 1485—1488

[12] Ryu J, Park C. Adv. Mater., 2008, 20(19): 3754—3758

[13] Reches M, Gazit E. Phys. Biol., 2006, 3: S10—S19

[14] Yan X, He Q, Wang K, Duan L, Cui Y, Li J. Angew. Chem. Int. Ed., 2007, 119(14): 2431—2434

[15] Orbach R, Adler-Abramovich L, Zigerson S, Mironi-Harpaz I, Seliktar D, Gazit E. Biomacromolecules, 2009, 10(9): 2646—2651

[16] Reches M, Gazit E. Nano Lett., 2004, 4(4): 581—585

[17] Liang G, Yang Z, Zhang R, Li L, Fan Y, Kuang Y, Gao Y, Wang T, Lu W, Xu B. Langmuir, 2009, 25(15): 8419—8422

[18] Grbitz C H. Chem. -Eur. J., 2007, 13(4): 1022—1031

[19] Zhang S G, Zhao X J. J. Mater. Chem., 2004, 14(14): 2082—2086

[20] Khoe U, Yang Y L, Zhang S G. Macromol. Biosci., 2008, 8(11): 1060—1067

[21] Vauthey S, Santoso S, Gong H Y, Watson N, Zhang S G. Proc. Natl. Acad. Sci. USA, 2002, 99(8): 5355—5360

[22] Adams D J, Holtzmann K, Schneider C, Butler M F. Langmuir, 2007, 23(25): 12729—12736

[23] Lu K, Jacob J, Thiyagarajan P, Conticello V P, Lynn D G. J. Am. Chem. Soc., 2003, 125(21): 6391—6393

[24] Lu K, Guo L, Mehta A K, Childers W S, Dublin S N, Skanthakumar S, Conticello V P, Thiyagarajan P, Apkarian R P, Lynn D G. Chem. Commun., 2007: 2729—2731

[25] Dong J J, Shokes J E, Scott R A, Lynn D G. J. Am. Chem. Soc., 2006, 128(11): 3540—3542

[26] Castelletto V, Hamley I W, Harris P J F, Olsson U, Spencer N. J. Phys. Chem. B, 2009, 113(29): 9978—9987

[27] Krysmann M, Castelletto V, Hamley I. Soft Matter, 2007, 3(11): 1401—1406

[28] Krysmann M J, Castelletto V, McKendrick J E, Clifton L A, Hamley I W, Harris P J F, King S A. Langmuir, 2008, 24(15): 8158—8162

[29] Rohan V, Hule A. Angew. Chem. Int. Ed., 2009, 48: 2317—2320

[30] Matsui H, Gologan B. J. Phys. Chem. B, 2000, 104(15): 3383—3386

[31] Dong H, Paramonov S E, Aulisa L, Bakota E L, Hartgerink J D. J. Am. Chem. Soc., 2007, 129(41): 12468—12472

[32] Wang X M, Horii A, Zhang S G. Soft Matter, 2008, 4(12): 2388—2395

[33] Horii A, Wang X M, Gelain F, Zhang S G. Plos One, 2007, 2(2): e190. doi: 10. 1371/journal. pone. 0000190

[34] Zhao Y, Tan T W, Yokoi H, Tanaka M, Kinoshita T. J. Polym. Sci. Pol. Chem., 2008, 46(14): 4927—4933

[35] Koutsopoulos S, Unsworth L D, Nagaia Y, Zhang S G. Proc. Natl. Acad. Sci. USA, 2009, 106(12): 4623—4628

[36] Palmer L C, Newcomb C J, Kaltz S R, Spoerke E D, Stupp S I. Chem. Rev., 2008, 108(11): 4754—4783

[37] Cui H, Muraoka T, Cheetham A G, Stupp S I. Nano Lett., 2009, 9(3): 945—951

[38] Palmer L C, Stupp S I. Accounts Chem. Res., 2008, 41(12): 1674—1684

[39] Sargeant T D, Rao M S, Koh C Y, Stupp S I. Biomaterials, 2008, 29(8): 1085—1098

[40] Cui H G, Webber M J, Stupp S I. Biopolymers, 2010, 94(1): 1—18

[41] Bong D T, Clark T D, Granja J R, Ghadiri M R. Angew. Chem. Int. Ed., 2001, 40(6): 988—1011

[42] Amorin M, Castedo L, Granja J R. J. Am. Chem. Soc., 2003, 125(10): 2844—2845

[43] Horne W S, Stout C D, Ghadiri M R. J. Am. Chem. Soc., 2003, 125(31): 9372—9376

[44] Graveland-Bikker J F, Fritz G, Glatter O, de Kruif C G. J. Appl. Crystallogr., 2006, 39: 180—184

[45] Graveland-Bikker J F, Schaap I A T, Schmidt C F, de Kruif C G. Nano Lett., 2006, 6(4): 616—621

[46] Graveland-Bikker J F, Koning R I, Koerten H K, Geels R B J, Heeren R M A, de Kruif C G. Soft Matter, 2009, 5(10): 2020—2026

[47] Lu G, Al S F, Li J B. Langmuir, 2005, 21(5): 1679—1682

[48] Lu G, Komatsu T, Tsuchida E. Chem. Commun., 2007, (28): 2980—2982

[49] Tian Y, He Q, Cui Y, Li J B. Biomacromolecules, 2006, 7(9): 2539—2542

[50] Von Maltzahn G, Vauthey S, Santoso S, Zhang S U. Langmuir, 2003, 19(10): 4332—4337

[51] Liu P, Ni R, Mehta A, Childers W, Lakdawala A, Pingali S, Thiyagarajan P, Lynn D. J. Am. Chem. Soc., 2008, 130(50): 16867—16869

[52] Dong J J, Canfield J M, Mehta A K, Shokes J E, Tian B, Childers W S, Simmons J A, Mao Z, Scott R A, Warncke K. Proc. Natl. Acad. Sci. USA, 2007, 104(33): 13313—13318

[53] Liang Y, Guo P, Pingali S V, Pabit S, Thiyagarajan P, Berland K M, Lynn D G. Chem. Commun., 2008: 6522—6524

[54] Hamley I W, Castelletto V, Moulton C, Myatt D, Siligardi G, Oliveira C L P, Pedersen J S, Abutbul I, Danino D. Macromol. Biosci., 2010, 10(1): 40—48

[55] Hamley I W, Krysmann M J, Castelletto V, Noirez L. Adv. Mater., 2008, 20(23): 4384—4384

[56] Hamley I W, Nutt D R, Brown G D, Miravet J F, Escuder B, Rodriguez-Llansola F. J. Phys. Chem. B, 2010, 114(2): 940—951

[57] Rajagopal K, Schneider J P. Curr. Opin. Struct. Biol., 2004, 14(4): 480—486

[58] de la Rica R, Mendoza E, Lechuga L M, Matsui H. Angew. Chem. Int. Ed., 2008, 47(50): 9752—9755

[59] Lee S Y, Gao X Y, Matsui H. J. Am. Chem. Soc., 2007, 129(10): 2954—2958

[60] Porrata P, Goun E, Matsui H. Chem. Mat., 2002, 14(10): 4378—4381

[61] Matsui H, Douberly G E. Langmuir, 2001, 17(25): 7918—7922

[62] Cui H G, Pashuck E T, Velichko Y S, Weigand S J, Cheetham A G, Newcomb C J, Stupp S I. Science, 2010, 327(5965): 555—559

[63] Hartgerink J D, Beniash E, Stupp S I. Proc. Natl. Acad. Sci. USA, 2002, 99(8): 5133—5138

[64] Silva G A, Czeisler C, Niece K L, Beniash E, Harrington D A, Kessler J A, Stupp S I. Science, 2004, 303(5662): 1352—1355

[65] Hartgerink J D, Beniash E, Stupp S I. Science, 2001, 294(5547): 1684—1688

[66] Block M A B, Hecht S. Angew. Chem. Int. Ed., 2005, 44(43): 6986—6989

[67] Gauthier D, Baillargeon P, Drouin M, Dory Y L. Angew. Chem. Int. Ed., 2001, 40(24): 4635—4638

[68] Ashkenasy N, Horne W S, Ghadiri M R. Small, 2006, 2(1): 99—102

[69] Couet J, Jeyaprakash J D, Samuel S, Kopyshev A, Santer S, Biesalski M. Angew. Chem. Int. Ed., 2005, 44(21): 3297—3301

[70] Teranishi M, Okamoto H, Takeda K, Nomura K, Nakano A, Kalia R K, Vashishta P, Shimojo F. J. Phys. Chem. B, 2009, 113(5): 1473—1484

[71] Chiu C C, Dieckmann G R, Nielsen S O. J. Phys. Chem. B, 2008, 112(51): 16326—16333

[72] Cheng J, Zhu J C, Liu B. Chem. Phys., 2007, 333(2/3): 105—111

[73] Hwang H, Schatz G C, Ratner M A. J. Phys. Chem. A, 2009, 113(16): 4780—4787

[74] Grbitz C H. Chem. Commun., 2006, (22): 2332—2334

[75] Grbitz C H. Acta Crystallogr. Sect. B-Struct. Sci., 2010, 66: 84—93

[76] Wang J, Han S Y, Meng G, Xu H, Xia D H, Zhao X B, Schweins R, Lu J R. Soft Matter, 2009, 5(20): 3870—3878

[77] Hwang H, Schatz G C, Ratner M A. J. Phys. Chem. B, 2006, 110(51): 26448—26460

[78] Djalali R, Chen Y F, Matsui H. J. Am. Chem. Soc., 2003, 125(19): 5873—5879

[79] Bose P P, Drew M G B, Banerjee A. Org. Lett., 2007, 9(13): 2489—2492

[80] Palui G, Nanda J, Ray S, Banerjee A. Chem. Eur. J., 2009, 15(28): 6902—6909

[81] 唐敏(Tang M), 樊建芬(Pang J F), 刘健(Liu J)等. 化学进展(Prog. Chem. ), 2010, 22(4): 648—653

[82] Yemini M, Reches M, Gazit E, Rishpon J. Anal. Chem., 2005, 77(16): 5155—5159

[83] Yemini M, Reches M, Rishpon J, Gazit E. Nano Lett., 2005, 5(1): 183—186

[84] Cho E C, Choi J W, Lee M Y, Koo K K. Colloid Surf. A—Physicochem. Eng. Asp., 2008, 313: 95—99

[85] Luo Z L, Zhao X J, Zhang S G. Macromol. Biosci., 2008, 8(8): 785—791

[86] Kisiday J, Jin M, Kurz B, Hung H, Semino C, Zhang S, Grodzinsky A J. Proc. Natl. Acad. Sci. USA, 2002, 99(15): 9996—10001

[87] Shah R N, Shah N A, Lim M M D, Hsieh C, Nuber G, Stupp S I. Proc. Natl. Acad. Sci. USA, 2010, 107(8): 3293—3298

[88] Mata A, Hsu L, Capito R, Aparicio C, Henrikson K, Stupp S I. Soft Matter, 2009, 5(6): 1228—1236

[89] Mahler A, Reches M, Rechter M, Cohen S, Gazit E. Adv. Mater., 2006, 18(11): 1365—1370

[90] Zhou M, Smith A M, Das A K, Hodson N W, Collins R F, Ulijn R V, Gough J E. Biomaterials, 2009, 30(13): 2523—2530

[91] Fung S Y, Yang H, Bhola P T, Sadatmousavi P, Muzar E, Liu M Y, Chen P. Adv. Funct. Mater., 2009, 19(1): 74—83

[92] Keyes-Baig C, Duhamel J, Fung S Y, Bezaire J, Chen P. J. Am. Chem. Soc., 2004, 126(24): 7522—7532

[1] 陈戈慧, 马楠, 于帅兵, 王娇, 孔金明, 张学记. 可卡因免疫及适配体生物传感器[J]. 化学进展, 2023, 35(5): 757-770.
[2] 王新月, 金康. 多肽及蛋白质的化学合成研究[J]. 化学进展, 2023, 35(4): 526-542.
[3] 刘峻, 叶代勇. 抗病毒涂层[J]. 化学进展, 2023, 35(3): 496-508.
[4] 李良春, 郑仁林, 黄毅, 孙荣琴. 多组分自组装小分子水凝胶中的自分类组装[J]. 化学进展, 2023, 35(2): 274-286.
[5] 王克青, 薛慧敏, 秦晨晨, 崔巍. 二苯丙氨酸二肽微纳米结构的可控组装及应用[J]. 化学进展, 2022, 34(9): 1882-1895.
[6] 王萌, 宋贺, 李烨文. 三维自组装蓝相液晶光子晶体[J]. 化学进展, 2022, 34(8): 1734-1747.
[7] 陆峰, 赵婷, 孙晓军, 范曲立, 黄维. 近红外二区发光稀土纳米材料的设计及生物成像应用[J]. 化学进展, 2022, 34(6): 1348-1358.
[8] 周晋, 陈鹏鹏. 二维纳米材料的改性及其环境污染物治理方面的应用[J]. 化学进展, 2022, 34(6): 1414-1430.
[9] 韩冬雪, 金雪, 苗碗根, 焦体峰, 段鹏飞. 超分子组装体激发态手性的响应性[J]. 化学进展, 2022, 34(6): 1252-1262.
[10] 尹航, 李智, 郭晓峰, 冯岸超, 张立群, 汤华燊. RAFT链转移剂的选用原则及通用型RAFT链转移剂[J]. 化学进展, 2022, 34(6): 1298-1307.
[11] 颜范勇, 臧悦言, 章宇扬, 李想, 王瑞杰, 卢贞彤. 检测谷胱甘肽的荧光探针[J]. 化学进展, 2022, 34(5): 1136-1152.
[12] 李红, 史晓丹, 李洁龄. 肽自组装水凝胶的制备及在生物医学中的应用[J]. 化学进展, 2022, 34(3): 568-579.
[13] 刘玉玲, 胡腾达, 李伊莲, 林洋, Borsali Redouane, 廖英杰. 嵌段共聚物薄膜快速自组装方法[J]. 化学进展, 2022, 34(3): 609-615.
[14] 孙华悦, 向宪昕, 颜廷义, 曲丽君, 张光耀, 张学记. 基于智能纤维和纺织品的可穿戴生物传感器[J]. 化学进展, 2022, 34(12): 2604-2618.
[15] 彭倩, 张晶晶, 房新月, 倪杰, 宋春元. 基于表面增强拉曼光谱技术的心肌生物标志物检测[J]. 化学进展, 2022, 34(12): 2573-2587.
阅读次数
全文


摘要

肽基纳米材料及其应用