English
新闻公告
More
化学进展 2010, Vol. 22 Issue (11): 2099-2105 前一篇   后一篇

• 综述与评论 •

CO2开关型溶剂、溶质及表面活性剂*

王九霞1,2   苏鑫1,2  Philip G. Jessop3   冯玉军1**   

  1. (1. 中国科学院成都有机研究所  成都  610041 ;2. 中国科学院研究生院  北京  100049;3.Department of Chemistry, Queen’s University, Kingston,Onttario K7L 3N6,Canada)

     
  • 收稿日期:2010-02-24 修回日期:2010-05-17 出版日期:2010-11-24 发布日期:2010-10-20
  • 通讯作者: 冯玉军 E-mail:yujun.feng@yahoo.com
  • 基金资助:

    四川省基础青年基金项目

CO2 Switchable Solvents, Solutes and Surfactants: State of the Art

Wang Jiuxia1,2  Su Xin1,2   Philip G. Jessop3   Feng Yujun1**   

  1. (1.Chengdu Institute of Organic Chemistry,Chinese Academy of Sciences,Chengdu 610041,China;2. Graduate School of Chinese Academy of Sciences,Beijing 100049,China;3.Department of Chemistry, Queen’s University, Kingston,Onttario K7L 3N6,Canada)
  • Received:2010-02-24 Revised:2010-05-17 Online:2010-11-24 Published:2010-10-20
  • Contact: Feng Yujun E-mail:yujun.feng@yahoo.com

CO2诱导的开关型溶剂、溶质及表面活性剂是指在通入和排出CO2后,其溶液性质能发生可逆变化的新型溶剂、溶质及表面活性剂,是典型的环境刺激响应型智能化合物。本文综述了CO2诱导的开关型溶剂、溶质及表面活性剂的结构、性能及研究进展,并指出了这些开关型溶剂、溶质及表面活性剂的发展方向及应用前景等。

CO2-induced switchable solvents, solutes and surfactants represent a novel family of smart compounds appeared recently. When bubbling and removing CO2, the properties of these compounds can be reversibly switchable. The progress on CO2 switchable solvents, solutes and surfactants were reviewed in this article, including their structures, properties and future development. The existing problems, the development prospect and potential applications of such switchable compounds were outlooked.

Contents
1 CO2 switchable solvents
1.1 Switchable polarity solvents
1.2 Switchable hydrophilicity solvents
2 CO2 switchable solutes
3 CO2 switchable surfactants
3.1 Conventional switchable surfactants
3.2 CO2 switchable surfactants
4 Conclusion and prospective

中图分类号: 

()

[1] Jessop P G, Stanley R R, Brown R A, Eckert C A, Liotta C L, Ngo T, Pollet P. Green Chem., 2003, 5: 123—128
[2] Tai C C, Pitts J, Main A D, Linehan J C, Munshi P, Jessop P G. Inorg. Chem., 2002, 41: 1606—1614
[3] Jessop P G, Subramaniam B. Chem. Rev., 2007, 107: 2666—2694
[4] Jessop P G, Ikariya T, Noyori R. Nature, 1994, 368: 231—233
[5] Li C J, Jessop P G. Green Chem., 2004, 6: 51—51
[6] Jessop P G, Heldebrant D J, Li X W, Eckert C A, Liotta C L. Nature, 2005, 436: 1102—1102
[7] Phan L, Chiu D, Heldebrant D J, Huttenhower H, John E, Li X, Pollet P, Wang R, Eckert C A, Liotta C L, Jessop P G. Ind. Eng. Chem. Res., 2008, 47: 539—545
[8] Heldebrant D J, Jessop P G, Thomas C A, Eckert C A, Liotta C L. J. Org. Chem., 2005, 70: 5335—5338
[9] Yamada T, Lukac P J, George M, Weiss R G. Chem. Mater., 2007, 19: 967—969
[10] Phan L, Andreatta J R, Horvey L K, Edie C F, Luco A L, Mirchandi A, Darensbourg D J, Jessop P G. J. Org. Chem., 2008, 73: 127—132
[11] Li W J, Zhang Z F, Han B X, Hu S Q, Song J L, Xie Y, Zhou X. Green Chem., 2008, 10: 1142—1145
[12] Jessop P G, Phan L, Carrier A, Robinson S, Dürr C J, Harjani J R. Green Chem., 2010, 12: 809—814
[13] Phan L, Brown H, White J, Hodgson A, Jessop P G. Green Chem., 2009, 11: 53—59
[14] Andanson J M, Jutz F, Baiker A. J. Phys. Chem. B, 2009, 113: 10249—10254
[15] Planeta J, Karásek P, Roth M. J. Phys. Chem. B, 2007, 111: 7620—7625
[16] Yave W, Car A, Peinemann K V. J. Membr. Sci., 2010, 350: 124—129
[17] Jessop P G, Stanley R R, Brown R A, Eckert C A, Liotta C L, Ngo T T, Pollet P. Green Chem., 2003, 5: 123—128
[18] Zhang F, Xu Q, Zhang H, Zhang Z W. J. Phys. Chem. C, 2009, 113: 18531—18535
[19] Blasucci V M, Husain Z A, Fadhel A Z, Donaldson M E, Vyhmeister E, Pollet P, Liotta C L, Eckert C A. J. Phys. Chem. A, 2010, 114: 3932—3938
[20] Wang X G, Yang H M, Feng B, Hou Z H, Hu Y, Qiao Y X, Li H, Zhao X G. Catal. Lett., 2009, 132: 34—40
[21] Heldebrant D J, Witt H N, Walsh S M, Ellis T, Rauscher J, Jessop P G. Green Chem., 2006, 8: 807—815
[22] Scurto A M, Leitner W. Chem. Commun., 2006, 45: 3681—3683
[23] Heldebrant D J, Jessop P G. J. Am. Chem. Soc., 2003, 125: 5600—5601
[24] Phan L, Jessop P G. Green Chem., 2009, 11: 307—308
[25] Desset S L, Cole-Hamilton D J. Angew. Chem. Int. Ed., 2009, 48: 1472—1474
[26] 解战峰(Xie Z F), 冯玉军(Feng Y J). 化学进展(Progress in Chemistry), 2009, 21: 1164—1170
[27] Jawitz J M, Annable M D, Rao P S C, Rhue R D. Environ. Sci. Health A, 2001, 36(8): 1437—1450
[28] Hashim M A, Kulanda I J, Hassan R S. J. Chem. Technol. Biot., 1992, 54: 207—214
[29] Ying G G. Environ. Int., 2006, 32: 417—431
[30] Klijn J E, Stuart M C A, Scarzello M, Wagenaar A, Engerberts J B F N. J. Phys. Chem. B, 2006, 110: 21694—21700
[31] Johnsson M, Wagenaar A J, Engberts B F N. J. Am. Chem. Soc., 2003, 125: 757—760
[32] Asokan A, Cho M J. Bioconjugate Chem., 2004, 15: 1166—1173
[33] Han S K, Bae Y H. Colloids Surf. A: Physicochem. Eng. Aspects, 2003, 214: 49—59
[34] Brazdova B, Rong N, Samoshin V V, Guo X. Chem. Commun., 2008, 39: 4774—4776
[35] 李英杰(Li Y J), 田森林(Tian S L), 宁平(Ning P). 应用化工(Applied Chemical Industry), 2008, 37(4): 438—441
[36] Gallardo B S, Hwa M J, Abbott N L. Langmuir, 1995, 11: 4209—4212
[37] Kakizaw Y, Sakai H, Nishiyama K, Abe M, Shoji H, Kondo Y, Yoshino N. Langmuir, 1996, 12: 921—924
[38] Saj I T, Hoshino K, Aoyaguz S. J. Am. Chem. Soc., 1985, 107: 6865—6868
[39] Aydogan N, Abbott N. Langmuir, 2001, 17: 5703—5706
[40] Kang H C, Lee B M, Yoon J, Yoon M. J. Colloid Interface Sci., 2000, 231: 255—264
[41] Eastoe J, Dominguez M S, Wyatt P, Beeby A, Heenan R. Langmuir, 2002, 18: 7837—7844
[42] Liu Y X, Jessop P G, Cunningham M, Eckert C A, Liotta C L. Science, 2006, 313: 958—960
[43] Poteau S, Argillier J F, Langevin D, Pincet F, Perez E. Energy Fuels, 2005, 19: 1337—1341
[44] Acevedo S, Borges B, Quintero F, Piscitelly V, Gutierrez L. Energy Fuels, 2005, 19: 1948—1953
[45] Vinci D, Donaldson M, Hallett J P, John E A, Pollet P, Tomas C A, Grilly J D, Jessop P G, Liotta C L, Eckert C A. Chem. Commun., 2007, 1427—1429
[46] Wang L, Qiao W H, Cao C, Li Z. Colloids Surf. A: Physicochem. Eng. Aspects, 2008, 320: 271—274
[47] 秦勇(Qin Y), 纪俊玲(Ji J L), 么士平(Yao S P). 日用化学工业(China Surfactant Detergent & Cosmetics), 2009, 39(2): 89—92
[48] 秦勇(Qin Y), 纪俊玲(Ji J L), 汪媛(Wang Y). 日用化学工业(China Surfactant Detergent & Cosmetics), 2008, 39(9): 15—18
[49] 秦勇(Qin Y), 纪俊玲(Ji J L), 汪媛(Wang Y), 丁璇(Ding X). 日用化学品科学(Detergent & Cosmetics), 2009, 32(11): 18—22
[50] 秦勇(Qin Y), 纪俊玲(Ji J L), 葛海华(Ge H H). 日用化学工业(China Surfactant Detergent & Cosmetics), 2009, 39(6): 386—389
[51] Zhou K J, Li J F, Lu Y, Zhang G, Xie Z, Wu C. Macromolecules, 2009, 42: 7146—7154
[52] Ochiai B, Yokota K, Fujii A, Nagai D, Endo T. Macromolecules, 2008, 41: 1229—1236
[53] Yu T, Yamada T, Gaviola G C, Weiss R G. Chem. Mater., 2008, 20: 5337—5344
[54] Yamada T, Lukac P J, Yu T, Weiss R G. Chem. Mater., 2007, 19: 4761—4768
[55] Hartmann L, Bedard M, Brner H G, Mhwald H, Sukhorukov G B, Antonietti M. Soft Matter, 2008, 4: 534—539
[56] Muoz D M, Portugal A F, Lozano A E, de la Campa J G, de Abajo J. Energy Environ. Sci., 2009, 2: 883—891

[1] 刘亚伟, 张晓春, 董坤, 张锁江. 离子液体的凝聚态化学研究[J]. 化学进展, 2022, 34(7): 1509-1523.
[2] 康美荣, 金福祥, 李臻, 宋河远, 陈静. 离子液体固载化及应用研究[J]. 化学进展, 2020, 32(9): 1274-1293.
[3] 刘风国, 王博, 章莲玉, 刘爱民, 王兆文, 石忠宁. 离子液体在电沉积铝及铝合金中的应用[J]. 化学进展, 2020, 32(12): 2004-2012.
[4] 佟国宾, 鄂雷, 徐州, 马春慧, 李伟, 刘守新. 基于离子液体的炭材料制备、改性及应用[J]. 化学进展, 2019, 31(8): 1136-1147.
[5] 李志勇, 冯莹, 王慧勇, 袁晓晴, 赵玉灵, 王键吉. 光响应离子液体的结构与性能调控[J]. 化学进展, 2019, 31(11): 1550-1559.
[6] 刘文巧, 李臻, 夏春谷. 酸功能化离子液体固相催化材料的制备及应用[J]. 化学进展, 2018, 30(8): 1143-1160.
[7] 程海东, 陈双俊*. 功能化离子液体在聚酯PET降解与合成中的应用[J]. 化学进展, 2017, 29(4): 443-449.
[8] 宋河远, 康美荣, 靳荣华, 金福祥, 陈静. 离子液体在羰基化反应中的应用[J]. 化学进展, 2016, 28(9): 1313-1327.
[9] 杨许召, 王军, 方云. 双阳离子液体的合成、性能及应用[J]. 化学进展, 2016, 28(2/3): 269-283.
[10] 孟艳山, 陈玉焕, 邓雨晨, 张姝明, 王桂香. 离子液体及离子液体膜在天然气净化方面的应用[J]. 化学进展, 2015, 27(9): 1324-1332.
[11] 徐艺凇, 张凤香, 厉嘉云, 白赢, 肖文军, 彭家建. 聚乙二醇功能化离子液体的制备及其在有机反应中的应用[J]. 化学进展, 2015, 27(10): 1400-1412.
[12] 王雪珠, 谭忱, 李永琪, 张恒, 刘晔. 离子型膦配体及其离子型过渡金属配合物的合成和均相催化作用[J]. 化学进展, 2015, 27(1): 27-37.
[13] 李善建, 冯拉俊. 功能离子液体杂化固相纳米材料的制备及催化应用[J]. 化学进展, 2014, 26(10): 1633-1644.
[14] 孙晓杰, 邢钧, 翟毓秀, 李兆新. 离子液体在气相色谱固定相中的应用[J]. 化学进展, 2014, 26(04): 647-656.
[15] 李庆川, 曹立新, 胡海峰, 王凯, 闫培生. 黄曲霉毒素电化学生物传感器[J]. 化学进展, 2014, 26(04): 657-664.