English
新闻公告
More
化学进展 2010, Vol. 22 Issue (07): 1274-1285 前一篇   后一篇

• 特约稿 •

超临界二氧化碳介质中的有机反应*

戚朝荣   江焕峰**   

  1. (华南理工大学化学与化工学院    广州  510640)
  • 收稿日期:2010-03-01 出版日期:2010-07-24 发布日期:2010-07-02
  • 通讯作者: 江焕峰 E-mail:jianghf@scut.edu.cn
  • 基金资助:

    国家自然科学基金;国家教育部博士点基金;广东省自然科学基金

Organic Reactions in Supercritical Carbon Dioxide

Qi Chaorong    Jiang Huanfeng**   

  1. (School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 610540, China)
  • Received:2010-03-01 Online:2010-07-24 Published:2010-07-02
  • Contact: Jiang Huanfeng E-mail:jianghf@scut.edu.cn

本文主要介绍了超临界近5年来超临界二氧化碳中的有机反应研究的最新进展,包括加氢反应、氧化反应、羰基化反应、碳碳键形成反应、酯化反应和酶催化反应的研究现状;同时,还介绍了超临界二氧化碳作为反应底物用于合成碳酸酯和氨基甲酸酯的研究进展;并对未来的发展进行了展望。

The progress on organic reactions in supercritical carbon dioxide in recent five year is reviewed in this paper, which includes hydrogenation, oxidation, carbonylation, carbon-carbon bond formation, esterification and enzymatic reaction. The synthesis of carbonates and carbamates using supercritical carbon dioxide as substrate is also discussed. The outlook of the research area is provided.

Contents 
1 Introduction 
2 Hydrogenation 
2.1 Asymetric hydrogenation 
2.2 Hydrogenation of phenols 
2.3 Hydrogenation of nitroaromatics 
2.4 Other hydrogenations 
3 Oxidation 
3.1 Oxidation of alcohols 
3.2 Oxidation of hydrocarbons 
3.3 Wacker reaction
3.4 Baeyer-Villiger reaction 
4 Carbonylation 
4.1 Hydroformylation
4.2 Hydrocarboxylation 
4.3 Hydroesterification 
5 Carbon-Carbon bond formation 
5.1 Friedel-Crafts alkylation 
5.2 Aldol reaction 
5.3 Coupling reaction 
5.4 Cyclotrimerization 
5.5 Hydrovinylation
6 Esterification 
7 Enzymatic reaction 
8 Supercritical carbon dioxide as substrate 
8.1 Synthesis of carbonates
8.2 Synthesis of carbamates 
9 Conclusions and outlook

中图分类号: 

()

[1 ] Jiang H. Curr. Org. Chem. ,2005,9: 289—297
[2 ] Campestrini S,Tonellato U. Curr. Org. Chem. ,2005,9: 31—
47
[3 ] Matsuda T, Harada T, Nakamura K, et al. Tetrahedron:
Asymmetry,2005,16: 909—915
[4 ] Beckman E J. J. Supercrit. Fluids,2004,28: 121—191
[5 ] 胡玉(Hu Y) ,侯震山( Hou Z S ) . 化学进展( Progress in
Chemistry) ,2007,19(9) :1267—1274
[6 ] 岳晓东(Yue X D) ,何良年( He L N) . 有机化学( Chinese
Journal of Organic Chemistry) ,2006,26(5) : 610—617
[7 ] Stephenson P, Kondor B, Licence P, et al. Adv. Synth.
Catal. ,2006,348: 1605—1610
[8 ] Lyubimov S E,Davankov V A,Said-Galiev E E,et al. Catal.
Commun. ,2008,9: 1851—1852
[9 ] Lyubimov S E,Said-Galiev E E,Khokhlov A R,et al. J.
Supercrit. Fluids,2008,45: 70—73
[10] Burgemeister K,Franciò G,Gego V H,et al. Chem. Eur. J. ,
2007,13: 2798—2804
[11] Clark P,Poliakoff M,Wells A. Adv. Synth. Catal. ,2007,
349: 2655—2659
[12] Chatterjee M,Kawanami H,Sato M,et al. Adv. Synth. Catal. ,
2009,351: 1912—1924
[13] Hiyoshi N,Rode C V,Sato O,et al. J. Catal. ,2007,252:
57—68
[14] Hiyoshi N,Bando K K,Sato O,et al. Catal. Commun. ,2009,
10: 1702—1705
[15] Liu H Z, Jiang T,Han B X, et al. Science,2009,326:
1250—1252
[16] Ichikawa S,Tada M, Iwasawa Y, et al. Chem. Commun. ,
2005,924—926
[17] Xi C,Cheng H,Hao J,et al. Molecular Catal. A: Chem. ,
2008,282: 80—84
[18] Hiyoshi N,Osada M,Rode C V,et al. Appl. Catal. A: Gen. ,
2007,331: 1—7
[19] Hiyoshi N,Yamaguchi A,Rode C V,et al. Catal. Commun. ,
2009,10: 1681—1684
[20] Hiyoshi N,Rode C V,Sato O,et al. Appl. Catal. A: Gen. ,
2005,288: 43—47
[21] Chatterjee M, Yokoyama T, Kawanami H, et al. Chem.
Commun. ,2009,701—703
[22] Altinel H,Avsar G,Guzel B. Transition Met. Chem. ,2009,
34: 331—335
[23] Wang Q,Cheng H,Liu R,et al. Catal. Commun. ,2009,10:
592—595
[24] Caravati M,Grunwaldt J D,Baiker A. Phys. Chem. Chem.
Phys. ,2005,7: 278—285
[25] Maayan G,Ganchegui B,Leitner W,et al. Chem. Commun. ,
2006,2230—2232
[26] Kimmerle B,Grunwaldt J D,Baiker A. Topics Catal. ,2007,
44: 285—292
[27] Wang X,Kawanami H,Dapurkar S E,et al. Appl. Catal. A:
Gen. ,2008,349: 86—90
[28] González-Núez M E, Mello R, Olmos A, et al. J. Org.
Chem. ,2006,71: 1039—1042
[29] Ciriminna R, Campestrinib S, Pagliaro M. Org. Biomol.
Chem. ,2006,4: 2637—2641
[30] Hou Z,Theyssen N,Brinkmann A,et al. Angew. Chem. Int.
Ed. ,2005,44: 1346—1349
[31] Olsen M H N,Salomo G C,Drago V,et al. Supercrit. Fluids,
2005,34: 119—124
[32] Yu K M K,Abutaki A,Zhou Y,et al. Catal. Lett. ,2007,
113: 115—119
[33] Theyssen N,Hou Z,Leitner W. Chem. Eur. J. ,2006,12:
3401—3409
[34] Dapurkar S E, Kawanami H, Yokoyama T, et al. New J.
Chem. ,2009,33: 538—544
[35] Wang X, Venkatarmanan N S, Kawanami H, et al. Green
Chem. ,2007,9: 1352—1355
[36] Wang J,Cai F,Wang E,et al. Green Chem. ,2007,9: 882—
887
[37] Wang Z,Jiang H,Qi C,et al. Green Chem. ,2005,7: 582—
585
[38] González-Núez M E, Mello R, Olmos A, et al. J. Org.
Chem. ,2006,71: 6432—6436
[39] Koeken A C J,van Vliet M C A,van de Broeke L J P,et al.
Adv. Synth. Catal. ,2006,348: 1553—1559
[40] Patcas F,Maniut C,Ionescu C,et al. Appl. Catal. B,2007,
70: 630—636
[41] Estorach C T,Orejón A,Masdeu-Bultó A M. Green Chem. ,
2008,10: 545—552
[42] Pedrósa M G,Masdeu-Bultó A M,Bayardon J,et al. Catal.
Lett. ,2006,107: 205—208
[43] Giménez-Pedrós M,Aghmiz A,Ruiz N,et al. Eur. J. Inorg.Chem. ,2006,1067—1075
[44] Fujita S,Akihara S,Fujisawa S,et al. J. Mol. Catal. A:
Chem. ,2007,268: 244—250
[45] Tortosa-Estorach C, Ruiz N, Masdeu-Bultó A M. Chem.
Commun. ,2006,2789—2791
[46] Estorach C T,Masdeu-Bultó A M. Catal. Lett. ,2008,122:
76—79
[47] Kamalakar G,Komura K, Sugi Y. Appl. Catal. A: Gen. ,
2006,310: 155—163
[48] Kamalakar G,Komura K,Sugi Y. Ind. Eng. Chem. Res. ,
2006,45: 6118—6126
[49] Amandi R,Licence P,Ross S K,et al. Org. Process Res.
Dev. ,2005,9: 451—456
[50] Amandi R,Scovell K,Licence P,et al. Green Chem. ,2007,
9: 797—801
[51] Xing H,Wang T,Dai Y. J. Supercrit. Fluids,2009,49: 52—
58
[52] Hagiwara H,Hamaya J,Hoshib T,et al. Tetrahedron Lett. ,
2005,46: 393—395
[53] Seki T,Grunwaldt J,van Vegten N,et al. Adv. Synth. Catal. ,
2008,350: 691—705
[54] Stevens J G,Bourne R A,Poliakoff M. Green Chem. ,2009,
11: 409—416
[55] Ballini R,Noè M,Perosa A,et al. J. Org. Chem. ,2008,73:
8520—8528
[56] Jiang H F,Tang J Y,Wang A Z,et al. Synthesis,2006,
1155—1161
[57] Jiang H F,Wang A Z. Synthesis,2007,1649—1654
[58] Zhou L,Zhang W D,Jiang H F. Sci. China Ser. B-Chem. ,
2008,51: 241—247
[59] Jiang H F,Xu Q X,Wang A Z. J. Supercritical Fluid,2009,
49: 377—384
[60] Leeke G A,Santos R C D,Al-Duri B,et al. Org. Process Res.
Dev. ,2007,11: 144—148
[61] Jiang H F,Huang X. J. Supercrit. Fluids,2007,43: 291—
294
[62] Jiang H F,Shen Y X,Wang Z Y. Tetrahedron,2008,64(3) :
508—514
[63] Zou B,Jiang H F. Sci. China Ser. B-Chem. ,2008,51 (5 ) :
447—451
[64] Rodríguez L I,Rossell O, Seco M, et al. J. Organometal.
Chem. ,2008,693: 1857—1860
[65] Ghaziaskar H S,Daneshfara A,Calvo L. Green Chem. ,2006,
8: 576—581
[66] Rezayat M,Ghaziaskar H S. Green Chem. ,2009,11: 710—
715
[67] Sakthivel A,Komura K, Sugi Y. Ind. Eng. Chem. Res. ,
2008,47: 2538—2544
[68] Harada T,Kubota Y,Kamitanaka T,et al. Tetrahedron Lett. ,
2009,50: 4934—4936
[69] Matsuda T,Marukado R,Mukouyama M,et al. Tetrahedron:
Asymmetry,2008,19: 2272—2275
[70] Yasmin T,Jiang T,Han B,et al. J. Mol. Catal. B: Enzym. ,
2006,41: 27—31
[71] Olsen T, Kerton F, Marriott R, et al. Enzym. Microb.
Technol. ,2006,39: 621—625
[72] Celebi N,Yildiz N,Demir A S,et al. J. Supercrit. Fluids,
2007,41: 386—390
[73] Palocci C,Falconi M,Chronopoulou L,et al. J. Supercrit.
Fluids,2008,45: 88—93
[74] Kayaki Y,Yamamoto M,Ikariya T. J. Org. Chem. ,2007,72:
647—649
[75] Jiang H F,Wang A Z,Liu H L,et al. Eur. J. Org. Chem. ,
2008,2309—2312
[76] Kayaki Y,Yamamoto M,Suzuki T,et al. Green Chem. ,2006,
8: 1019—1021
[77] Qi C R,Jiang H F,Wang Z Y,et al. Synlett,2007,255—258
[78] Jiang H F,Ye J W,Qi C R. Huang L B,Tetrahedron Lett. ,
2010,51: 928—932
[79] Jiang H F,Zhao J W,Wang A Z. Synthesis,2008,763—769
[80] Jiang H F,Zhao J W. Tetrahedron Lett. ,2009,50: 60—62
[81] Qi C R,Jiang H F. Green Chem. ,2007,9: 1284—1286

[1] 李帅, 朱娜, 程扬健, 陈缔. NH3选择性催化还原NOx的铜基小孔分子筛耐硫性能及再生研究[J]. 化学进展, 2023, 35(5): 771-779.
[2] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[3] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[4] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[5] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[6] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[7] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[8] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[9] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[10] 范克龙, 高利增, 魏辉, 江冰, 王大吉, 张若飞, 贺久洋, 孟祥芹, 王卓然, 樊慧真, 温涛, 段德民, 陈雷, 姜伟, 芦宇, 蒋冰, 魏咏华, 李唯, 袁野, 董海姣, 张鹭, 洪超仪, 张紫霞, 程苗苗, 耿欣, 侯桐阳, 侯亚欣, 李建茹, 汤国恒, 赵越, 赵菡卿, 张帅, 谢佳颖, 周子君, 任劲松, 黄兴禄, 高兴发, 梁敏敏, 张宇, 许海燕, 曲晓刚, 阎锡蕴. 纳米酶[J]. 化学进展, 2023, 35(1): 1-87.
[11] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[12] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[13] 张荡, 王曦, 王磊. 生物酶驱动的微纳米马达在生物医学领域的应用[J]. 化学进展, 2022, 34(9): 2035-2050.
[14] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.
[15] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.