English
新闻公告
More
化学进展 2010, Vol. 22 Issue (07): 1397-1402 前一篇   后一篇

• 特约稿 •

含三元环腈的生物转化反应与应用*

王德先1    王梅祥1,2**   

  1. (1. 中国科学院化学研究所    北京  100190; 2. 清华大学化学系    北京  100084)
  • 收稿日期:2010-01-28 出版日期:2010-07-24 发布日期:2010-07-02
  • 通讯作者: 王梅祥 E-mail:mxwang@iccas.ac.cn
  • 基金资助:

    国家自然科学基金项目

Biotransformations of Three-Membered (Hetero) Cyclic Nitriles and Their Applications in Organic Synthesis

 Wang Dexian1    Wang  Meixiang1,2**   

  1. (1. Institute of Chemistry Chinese Academy of Science, Beijing 100190, China;2. Department of Chemistry, Tsinghua University, Beijing 100084, China)
  • Received:2010-01-28 Online:2010-07-24 Published:2010-07-02
  • Contact: Wang Meixiang E-mail:mxwang@iccas.ac.cn

腈的对映选择性生物转化反应是合成高光学活性羧酸及其酰胺衍生物的有力手段。 本文介绍了在红球菌AJ270催化下,一系列含三元环结构的腈,包括环丙腈、环氧丙腈和氮杂环丙腈的生物转化反应。提出了腈水合酶和酰胺水解酶酶活中心的假设,即腈水合酶可能位于比较疏散的立体空间环境中,而酰胺水解酶则处于相对深埋的位置且空间大小有限。另外本文还探讨了腈的生物催化反应在天然产物及生物活性分子合成中的应用。

Enantioselective biotransformations of nitriles using nitrile hydrolyzing microbial whole cell catalysts are a powerful method for the synthesis of highly enantiopure carboxylic acids and amide derivatives. In this article, progress of Rhodococcus erythropolis AJ270-catalyzed enantioselective biotransformations of nitriles including various cyclopropane-, oxirane-, and aziridine-containing carbonitriles is summarized. On the basis of the outcomes of the biotransformation study, it is proposed that a readily reachable reactive site be embedded within the spacious pocket of the nitrile hydratase while the amidase might comprise a relatively deep-buried and size-limited active site. Applications of enantioselective biotransformations of nitriles in the synthesis of natural and bioactive products are also discussed.

Contents 
1 Introduction 
2 Biocatalysis and biotransformations of three membered cyclic nitriles 
2.1 Biocatalysis and biotransformations of cyclopropane nitriles 
2.2 Biocatalysis and biotransformations of three-membered heterocyclic nitriles and amides 
2.3 Applications of biotransformations on the synthesis of natural products and bioactive molecules 
3 Conclusions and outlook

中图分类号: 

()

[1 ] Rappoport Z. The Chemistry of Cyano Group. London: Wiley
Interscience,1970
[2 ] Evgred D,Harnett S. Cyanide Compounds in Biology ( Ciba
Foundation Symposium 140) . Chichester: Wiley,1988
[3 ] Kobayashi M,Shimizu S. FEMS Microbiol. Lett. ,1994,120:
217—223
[4 ] Sugai T,Yamazaki T,Yokoyama M,et al. Biosci. Biotechnol.
Biochem. ,1997,61: 1419—1427
[5 ] Martinkova L,Kren V. Biocatal. Biotrans. ,2002,20: 73—93
[6 ] Wang M X. Top. Catal. ,2005,35: 117—130
[7 ] Wang M X. Chimia,2009,63: 331—333
[8 ] Blakey A J,Colby J,Williams E, et al. FEMS Microbiol.
Lett. ,1995,129: 57—61
[9 ] O’Mahony R, Doran J, Coffey L, et al. Antonie van
Leeuwenhoek,2005,87: 221—232
[10] Song L,Yuan H J,Coffey L,et al. Biotech. Lett. ,2008,30:
755—762
[11] Meth-Cohn O, Wang M X. Tetrahedron Lett. , 1995, 36:
9561—9564
[12] Meth-Cohn O,Wang M X. J. Chem. Soc. Perkin Trans. ,
1997,1: 1099—1104
[13] Meth-Cohn O,Wang M X. J. Chem. Soc. Chem. Commun. ,
1997,1041—1042
[14] Meth-Cohn O,Wang M X. J. Chem. Soc. Perkin Trans. ,
1997,1: 3197—3204
[15] Rappoport Z. The Chemistry of the Cyclopropyl Group. John
Wiley & Sons,Ltd,1995
[16] Wang M X,Feng G Q. Tetrahedron Lett. ,2000,41: 6501—
6505
[17] Feng G Q,Wang M X. Chinese J. Chem. ,2001,19: 113—
115
[18] Wang M X,Feng G Q. New J. Chem. ,2002,26: 1575—1583
[19] Wang M X,Feng G Q. J. Org. Chem. ,2003,68: 621—624
[20] Wang M X,Feng G Q,Zheng Q Y. Adv. Synth. Catal. ,2003,
345: 695—698
[21] Wang M X,Feng G Q,Zheng Q Y. Tetrahedron: Asymmetry,
2004,15: 347—354
[22] Wang M X,Feng G Q. J. Mol. Cat. B Enzy. ,2002,18:
267—272
[23] Wang M X,Lin S J,Liu C S,et al. J. Org. Chem. ,2003,68:
4570—4573
[24] Wang J Y,Wang D X,Zheng Q Y,et al. J. Org. Chem. ,
2007,72: 2040—2045
[25] Wang J Y,Wang D X,Pan J,et al. J. Org. Chem. ,2007,
72: 9391—9394
[26] Wang M X,Deng G,Wang D X,et al. J. Org. Chem. ,2005,
70: 2439—2444
[27] Feng G Q, Wang D X, Zheng Q Y, et al. Tetrahedron:
Asymmetry,2006,17: 2775—2780
[28] Wang M X,Deng Gang,Wang D X,et al. J. Org. Chem. ,
2005,70: 2439—2444
[29] Wang J Y,Wang D X,Zheng Q Y,et al. J. Org. Chem. ,
2007,72: 2040—2045
[30] Ma D Y, Wang D X, Zheng Q Y, et al. Tetrahedron:
Asymmetry,2006,17: 2366—2376
[31] Gao M,Wang D X,Zheng Q Y,et al. J. Org. Chem. ,2006,
71: 9532—9535
[32] Yang L,Deng G,Wang D X,et al. Org. Lett. ,2007,9:
1387—1390
[33] Yang L,Zheng Q Y,Wang D X,et al. Org. Lett. ,2008,10:
2461—2464
[34] Yang L,Wang D X,Zheng Q Y,et al. Org. Biomol. Chem. ,
2009,7: 2628—2634
[35] Huang L,Wang M Z,Wang J T,et al. Chemistry and Biology of
Chiral Clausena Alkaloids. The Chemistry and Biology of Chiral
Drugs ( Eds. Huang L,Dai L X,Du C P,Wu L) . Beijing:
Chemical Industry Press,2002. 6—67
[36] Milner P H,Coates N J,Gilpin M L,et al. J. Nat. Prod. ,
1996,59: 400—402
[37] Riemer B,Hofer O, Greger H. Phytochemistry,1997,45:
337—341

[1] 于小燕, 李萌, 魏磊, 邱景义, 曹高萍, 文越华. 聚丙烯腈在锂金属电池电解质中的应用[J]. 化学进展, 2023, 35(3): 390-406.
[2] 蒋茹, 刘晨旭, 杨平, 游书力. 手性催化与合成中的一些凝聚态化学问题[J]. 化学进展, 2022, 34(7): 1537-1547.
[3] 吴亚娟, 罗静雯, 黄永吉. 二氧化碳与二甲胺催化合成N,N-二甲基甲酰胺[J]. 化学进展, 2022, 34(6): 1431-1439.
[4] 张芬铭, 田语舒, 郑绩, 陈堃, 冯岸超, 张立群. 基于PHPMA的生物医用功能高分子[J]. 化学进展, 2020, 32(2/3): 331-343.
[5] 刘耀阳, 刘志斌, 赵闯, 周羽, 高杨, 何辉. 锕系元素分离研究:不对称双酰胺荚醚的萃取化学及应用[J]. 化学进展, 2020, 32(2/3): 219-229.
[6] 邓璐遥, 李少路, 秦一文, 胡云霞. 抗污染薄层复合聚酰胺膜的结构设计及改性策略[J]. 化学进展, 2020, 32(12): 1895-1907.
[7] 俞杰, 龚流柱. 手性氨基酸酰胺催化剂的发现及研究进展[J]. 化学进展, 2020, 32(11): 1729-1744.
[8] 罗世鹏, 黄培强. 苹果酸——天然产物对映选择性全合成和合成方法学中多用途的手性合成砌块[J]. 化学进展, 2020, 32(11): 1846-1868.
[9] 王茜茜, 戴璐, 介素云, 李伯耿. 长链脂肪族二元酸的合成及其在缩聚反应中的应用[J]. 化学进展, 2019, 31(1): 70-82.
[10] 黄卫军, 朱宁*, 方正, 郭凯*. 含呋喃环生物基聚酰胺的合成[J]. 化学进展, 2018, 30(12): 1836-1843.
[11] 高晗, 徐军, 胡欣, 朱宁, 郭凯. 聚酯酰胺的合成[J]. 化学进展, 2018, 30(11): 1634-1645.
[12] 张晓鹏*, 董淑祥, 范学森, 张贵生. 邻氨基苯甲酰胺类化合物的合成[J]. 化学进展, 2017, 29(11): 1351-1356.
[13] 王志鹏, 田长麟, 郑基深. 聚酰胺类多肽二级结构模拟物的结构设计与性质分析[J]. 化学进展, 2016, 28(9): 1328-1340.
[14] 梅以成, 杨宝卫. 酰胺电子等排体在先导化合物优化中的应用[J]. 化学进展, 2016, 28(9): 1406-1416.
[15] 付开乔, 张光彦, 蒋序林. 聚天冬酰胺衍生物药物/基因载体的合成和应用[J]. 化学进展, 2016, 28(8): 1196-1206.