English
新闻公告
More
化学进展 2010, Vol. 22 Issue (04): 696-705 前一篇   后一篇

• 综述与评论 •

高分子电致发光材料结构设计方法概述*

陈润锋1,2;郑超2;范曲立1;黄维1,2**   

  1. (1.南京邮电大学 江苏省有机电子与信息显示重点实验室 南京 210046; 2.南京邮电大学 信息材料与纳米技术研究院 南京 210003)
  • 收稿日期:2009-05-05 修回日期:2009-08-06 出版日期:2010-04-24 发布日期:2010-03-30
  • 通讯作者: 黄维 E-mail:wei-huang@njupt.edu.cn

Molecular Design of Polymeric Electroluminescent Materials

Chen Runfeng1,2; Zheng Chao2; Fan Quli1; Huang Wei1,2**   

  1. (1. Jiangsu Key Lab for Organic Electronics & Information Displays, Nanjing University of Post s and Telecommunications, Nanjing 210046, China; 2. Institute of Advanced Materials, Nanjing Univerisity of Posts and Telecommunications, Nanjing 210003, China)
  • Received:2009-05-05 Revised:2009-08-06 Online:2010-04-24 Published:2010-03-30
  • Contact: Huang Wei E-mail:wei-huang@njupt.edu.cn

高分子发光二极管(PLED)因其巨大的科学和商业价值而得到了广泛关注,近年来各种新材料的不断开发和深入研究使PLED器件日益走向实用化。高分子电致发光材料的结构设计是新材料开发的灵魂,本文结合我们的工作概述了高分子发光材料结构设计的基本原理和设计要点,详细介绍了单分子结构设计方法及其相关的基本思路和理论,分析了聚集态结构对材料及其器件性能的影响,概括了聚集态结构设计的一些基本方法。最后提出了高分子发光材料结构设计的一般性思路,并展望了其研究和发展方向。

Polymer light-emitting diode (PLED) materials have attracted great attention and research interests due to their great scientific and economic potentials for flat panel display, lighting, etc. The in-depth research and the development of new materials make the practical applications of PLED appealing. The molecular design of desired polymeric electroluminescent materials is the key in the PLED development. In this review, we systematically summarize the basic methods and theories of molecular design of PLED materials, from the single molecule to the aggregated states, primarily based on our previous studies. In the single molecule design, various methods and theories are introduced and discussed in detail. While in the aggregated state design, brief discussions are presented due to the complexity and rapid development of this aspect. Finally, a general method for the molecular design of PLED materials is suggested on the expectation of their future developments.

Contents
1 Introduction
2 Basic considerations of PLED material molecular design
3 Single molecular design of PLED materials
3.1 Main chain designing
3.2 Sub chain designing
3.3 End-group designing
3.4 Chain topology designing
4 Aggregated state design of PLED materials
4.1 Dye doping (blending)
4.2 Nanostructure forming
4.3 Liquid crystal forming
4.4 Aromatic packing (supramolecular light-emitting)
5 Conclusion and outlook

中图分类号: 

()

[1 ] Pope M,Kallmann H,Magnante P. J. Chem. Phys. ,1963,38: 2042—2043
[2 ] Tang C W,Vanslyke S A. Appl. Phys. Lett. ,1987,51: 913—915
[3 ] Adachi C,Tokito S,Tsutsui T,et al. Jap. J. Appl. Phys. ,1988,27: 713—715
[4 ] Burroughes J H,Bradley D D,Brown A R,et al. Nature,1990,347: 539—541
[5 ] Leclerc M. Adv. Mater. ,1999,11: 1491—1498
[6 ] Bernius M T,Inbasekaran M,O′Brien J,et al. Adv. Mater. ,2000,12: 1737—1750
[7 ] Mitschke U,Bauerle P. J. Mater. Chem. ,2000,10: 1471—1507
[8 ] Grimsdale A C,Chan K L,Martin R E,et al. Chem. Rev. ,2009,109: 897—1091
[9 ] Kim D Y,Cho H N,Kim C Y. Prog. Polym. Sci. ,2000,25:1089—1139
[10] Katz H E. Chem. Mater. ,2004,16: 4748—4756
[11] Chen C T. Chem. Mater. ,2004,16: 4389—4400
[12] Yamaguchi S,Tamao K. J. Chem. Soc. Dalt. Trans. ,1998:3693—3702
[13] Liu B,Yu W L,Lai Y H,et al. Macromolecules,2000,33:8945—8952
[14] Xiao Y,Yu W L,Chua S J,et al. Chem. Eur. J. ,2000,6:1318—1321
[15] Yang R Q,Tian R Y,Yan J G,et al. Macromolecules,2005,38: 244—253
[16] Yang J,Jiang C Y,Zhang Y,et al. Macromolecules,2004,37:1211—1218
[17] Tu G L,Zhou Q G,Cheng Y X,et al. Appl. Phys. Lett. ,2004,85: 2172—2174
[18] Liu S J,Zhao Q,Chen R F,et al. Chem. Eur. J. ,2006,12:4351—4361
[19] Huang W,Meng H,Yu W L,et al. Macromolecules,1999,32: 118—126
[20] Yu W L,Meng H,Pei J,et al. J. Am. Chem. Soc. ,1998,120: 11808—11809
[21] Wang L H, Chen Z K, Xiao Y, et al. Macromol. Rapid Commun. ,2000,21: 897—900
[22] Sakamoto Y,Suzuki T,Kobayashi M,et al. J. Am. Chem.Soc. ,2004,126: 8138—8140
[23] Cheng M,Xiao Y,Yu W L,et al. Thin Solid Films,2000,363: 110—113
[24] Lu S,Fan Q L,Chua S J,et al. Macromolecules,2003,36:304—310
[25] Lu S,Fan Q L,Liu S Y,et al. Macromolecules,2002,35:9875—9881
[26] Kamata N,Aihara S,Umeda M,et al. J. Lumin. ,2000,87—9: 1186—1188
[27] Cimrova V,Vyprachticky D. Appl. Phys. Lett. ,2003,82:642—644
[28] Vyprachticky D, Cimrova V. Macromolecules, 2002, 35:3463—3473
[29] Adachi A,Yasuda H,Sanji T,et al. J. Lumin. ,2000,87—9:1174—1176
[30] Sanji T,Sakai T,Kabuto C,et al. J. Am. Chem. Soc. ,1998,120: 4552—4553
[31] Morisaki Y,Fujimura F,Chujo Y. Organometallics,2003,22:3553—3557
[32] Manhart S A,Adachi A,Sakamaki K,et al. J. Organomet.Chem. ,1999,592: 52—60
[33] Jung S H,Kim H K,Kim S H,et al. Macromolecules,2000,33: 9277—9288
[34] Paik K L,Baek N S,Kim H K,et al. Macromolecules,2002,35: 6782—6791
[35] Baek N S,Kim H K,Chae E H,et al. Macromolecules,2002,35: 9282—9288
[36] Chan K L,Mckiernan M J,Towns C R,et al. J. Am. Chem.Soc. ,2005,127: 7662—7663
[37] Kamata N,Terunuma D,Ishii R,et al. J. Organomet. Chem. ,2003,685: 235—242
[38] Chen J W,Cao Y. Macromol. Rapid Commun. ,2007,28:1714—1742
[39] Bonifacio V D,Morgado J,Scherf U. J. Polym. Sci. ,Part A:Polym. Chem. ,2008,46: 2878—2883
[40] Chen R F,Zhu R,Fan Q L,et al. Org. Lett. ,2008,10:2913—2916
[41] Chen R F,Zhu R, Zheng C, et al. Sci. China. Ser. B—Chem. ,2009,52: 212—218
[42] Wang W Z, Zhu R, Fan Q L, et al. Macromol. Rapid Commun. ,2006,27: 1142—1148
[43] Wurthner F, Bauer C, Stepanenko V, et al. Adv. Mater. ,2008,20: 1695—1698
[44] Saxena A,Fujiki M,Rai R,et al. Chem. Mater. ,2005,17:2181—2185
[45] Sharma A,Katiyar M,Deepak,et al. J. Appl. Phys. ,2007,102: art. no. 104902
[46] Suzuki H, Hoshino S, Furukawa K, et al. Polym. Adv.Technol. ,2000,11: 460—467
[47] Motonaga M, Nakashima H, Katz S, et al. J. Organomet.Chem. ,2003,685: 44—50
[48] Peng W Q,Motonaga M,Koe J R. J. Am. Chem. Soc. ,2004,126: 13822—13826
[49] Sanetra J,Bogdal D,Warzala M,et al. Chem. Mater. ,2002,14: 89—95
[50] Pina J,De M J,Burrows H D, et al. Chem. Phys. Lett. ,2004,400: 441—445
[51] Inaoka S,Roitman D B,Advincula R C. Chem. Mater. ,2005,17: 6781—6789
[52] Jiang G X,Yao B,Geng Y H,et al. Macromolecules,2006,39: 1403—1409
[53] Pei J,Liu X L,Yu W L,et al. Macromolecules,2002,35:7274—7280
[54] Chen X W,Liao J L,Liang Y M,et al. J. Am. Chem. Soc. ,2003,125: 636—637
[55] Ranger M,Rondeau D,Leclerc M. Macromolecules,1997,30:7686—7691
[56] Yang X H,Yang W,Yuan M,et al. Synth. Met. ,2003,135:189—190
[57] Kuo C H,Cheng W K,Lin K R,et al. J. Polym. Sci. ,Part A: Polym. Chem. ,2007,45: 4504—4513
[58] Chen X W,Tseng H E,Liao J L,et al. J. Phys. Chem. B,2005,109: 17496—17502
[59] Promarak V,Saengsuwan S,Jungsuttiwong S,et al. Tetrahedron Lett. ,2007,48: 89—93
[60] Sun M H,Bo Z S. J. Polym. Sci. ,Part A: Polym. Chem. ,2007,45: 111—124
[61] Oesterling I,Muellen K. J. Am. Chem. Soc. ,2007,129:4595—4605
[62] Xie L H,Hou X Y, Tang C, et al. Org. Lett. ,2006,8:1363—1366
[63] Zhu R,Wen G A, Feng J C, et al. Macromol. Rapid Commun. ,2005,26: 1729—1735
[64] Loy D E,Koene B E,Thompson M E. Adv. Funct. Mater. ,2002,12: 245—249
[65] Marsitzky D,Vestberg R,Blainey P,et al. J. Am. Chem.Soc. ,2001,123: 6965—6972
[66] Xin Y,Wen G A,Zeng W J,et al. Macromolecules,2005,38:6755—6758
[67] Cao X Y,Zhang W B,Wang J L,et al. J. Am. Chem. Soc. ,2003,125: 12430—12431
[68] Pei J,Wang J L,Cao X Y,et al. J. Am. Chem. Soc. ,2003,125: 9944—9945
[69] Ma Z,Lu S,Fan Q L,et al. Polymer,2006,47: 7382—7390
[70] Lai W Y,Zhu R,Fan Q L,et al. Macromolecules,2006,39:3707—3709
[71] Zhao W,Cao T,White J M. Adv. Funct. Mater. ,2004,14:783—790
[72] Zeng G,Yu W L,Chua S J,et al. Macromolecules,2002,35:6907—6914
[73] Yu W L,Pei J,Huang W,et al. Adv. Mater. ,2000,12:828—831
[74] Lai W Y,He Q Y,Zhu R,et al. Adv. Funct. Mater. ,2008,18: 265—276
[75] Jiang H J,Wang H Y,Zhu R,et al. J. Polym. Sci. ,Part A:Polym. Chem. ,2008,46: 1548—1558
[76] Chen J W,Xie Z L,Lam J W,et al. Macromolecules,2003,36: 1108—1117
[77] Yin S W,Peng Q,Shuai Z,et al. Physical Review B,2006,73: art. no. 205409
[78] Zhao Q,Li L,Li F Y,et al. Chem. Commun. ,2008,685—687
[79] Ren Y,Lam J W,Dong Y Q,et al. J. Phys. Chem. B,2005,109: 1135—1140
[80] Chen J W,Peng H,Law C C,et al. Macromolecules,2003,36: 4319—4327
[81] Lam J W,Chen J W, Law C C, et al. Macromolecular Symposia,2003,196: 289—300
[82] Qin A J,Lam J W,Tang L,et al. Macromolecules,2009,42:1421—1424
[83] Clapp A R,Medintz I L,Fisher B R,et al. J. Am. Chem.Soc. ,2005,127: 1242—1250
[84] Cho N S,Hwang D H,Jung B J,et al. Macromolecules,2004,37: 5265—5273
[85] Lim J T,Lee M J,Lee N H,et al. Current Applied Physics,2004,4: 327—330
[86] Praetorius A,Bailey D M,Schwarzlose T,et al. Org. Lett. ,2008,10: 4089—4092
[87] Chou P T,Chi Y. Chem. Eur. J. ,2007,13: 380—395
[88] Sun Y,Giebink N C,Kanno H,et al. Nature,2006,440:908—912
[89] Gong X,Ma W L,Ostrowski J C,et al. Adv. Mater. ,2004,16: 615—619
[90] Park Y S,Kang J W,Kang D M,et al. Adv. Mater. ,2008,20: 1957—1961
[91] Lei G T,Chen X L,Wang L,et al. J. Phys. D-Appl. Phys. ,2008,41: art. no. 105114
[92] Andreasen J W, Jorgensen M, Krebs F C. Macromolecules,2007,40: 7758—7762
[93] Bai R,Ouyang M,Zhou R J,et al. Nanothechnology,2008,19: art. no. 055604
[94] Chang Y L,Palacios R E,Fan F R,et al. J. Am. Chem.Soc. ,2008,130: 8906—8907
[95] Dabirian R,Palermo V,Liscio A,et al. J. Am. Chem. Soc. ,2009,131: 7055—7063
[96] Grimsdale A C,Müllen K. Angew. Chem. Int. Ed. ,2005,44: 5592—5629
[97] Roncali J,Leriche P,Cravino A. Adv. Mater. , 2007, 19:2045—2060
[98] Jeong S M,Ohtsuka Y,Ha N Y,et al. Appl. Phys. Lett. ,2007,90: art. no. 211106
[99] Peeters E,Christiaans M P,Janssen R A,et al. J. Am. Chem.Soc. ,1997,119: 9909—9910
[100] Oda M,Nothofer H G,Lieser G,et al. Adv. Mater. ,2000,12: 362—365
[101] Ikkala O,Ten B G. Science,2002,295: 2407—2409
[102] Nakano T,Yade T. J. Am. Chem. Soc. ,2003,125: 15474—15484
[103] Nakano T,Takewaki K,Yade T,et al. J. Am. Chem. Soc. ,2001,123: 9182—9183
[104] Nakano T,Yade T,Fukuda Y,et al. Macromolecules,2005,38: 8140—8148
[105] Yade T,Nakano T. J. Polym. Sci. ,Part A: Polym. Chem. ,2005,44: 561—572
[106] Wang W,Han J J,Wang L Q,et al. Nano Lett. ,2003,3:455—458

[1] 牛文辉, 张达, 赵振刚, 杨斌, 梁风. 钠基-海水电池的发展:“关键部件及挑战”[J]. 化学进展, 2023, 35(3): 407-420.
[2] 于兰, 薛沛然, 李欢欢, 陶冶, 陈润锋, 黄维. 圆偏振发光性质的热活化延迟荧光材料及电致发光器件[J]. 化学进展, 2022, 34(9): 1996-2011.
[3] 职怡缤, 于兰, 李欢欢, 陶冶, 陈润锋, 黄维. 芳基硅磷光主体材料在有机电致发光器件中的应用[J]. 化学进展, 2022, 34(5): 1109-1123.
[4] 李金涛, 张明祖, 何金林, 倪沛红. 低共熔溶剂在高分子合成中的应用[J]. 化学进展, 2022, 34(10): 2159-2172.
[5] 吴贤文, 龙凤妮, 向延鸿, 蒋剑波, 伍建华, 熊利芝, 张桥保. 中性或弱酸性体系下锌基水系电池负极材料研究进展[J]. 化学进展, 2021, 33(11): 1983-2001.
[6] 陈香李, 刘凯强, 房喻. 分子凝胶:从结构调控到功能应用[J]. 化学进展, 2020, 32(7): 861-872.
[7] 汪润田, 柳春丽, 陈振斌. 印迹复合膜[J]. 化学进展, 2020, 32(7): 989-1002.
[8] 蒋云波, 李欢欢, 陶冶, 陈润锋, 黄维. 热活化延迟荧光聚合物及其电致发光器件[J]. 化学进展, 2019, 31(8): 1116-1128.
[9] 裴强, 丁爱祥. 四重氢键自组装体系的设计与应用[J]. 化学进展, 2019, 31(2/3): 258-274.
[10] 彭立山, 魏子栋*. 高性能电解水电极催化材料的设计及产品工程[J]. 化学进展, 2018, 30(1): 14-28.
[11] 邓南平, 马晓敏, 阮艳莉, 王晓清, 康卫民, 程博闻. 锂硫电池系统研究与展望[J]. 化学进展, 2016, 28(9): 1435-1454.
[12] 姚臻, 戴博恩, 于云飞, 曹堃. 巯基-环氧点击化学及其在高分子材料中的应用[J]. 化学进展, 2016, 28(7): 1062-1069.
[13] 姜鸿基*, 张庆维. 三苯基膦氧基团在合成高性能有机电致发光材料中的应用[J]. 化学进展, 2016, 28(10): 1515-1527.
[14] 钟渤凡, 王世荣, 肖殷, 李祥高. 有机电致发光器件中的双极性蓝光荧光材料[J]. 化学进展, 2015, 27(8): 986-1001.
[15] 苏斌, 赵静, 刘春波, 车广波, 王庆伟, 徐占林. 基于8-羟基喹啉及其衍生物的有机小分子电致发光材料[J]. 化学进展, 2013, 25(07): 1090-1101.