English
新闻公告
More
化学进展 2010, Vol. 22 Issue (0203): 331-337 前一篇   后一篇

• 综述与评论 •

非共价方法分离金属型和半导体型单壁碳纳米管

林高锋;孟令杰**;张晓科;路庆华   

  1. (上海交通大学化学化工学院 上海 200240)
  • 收稿日期:2009-04-20 修回日期:2009-06-18 出版日期:2010-03-24 发布日期:2010-03-18
  • 通讯作者: 孟令杰 E-mail:menglingjie@sjtu.edu.cn
  • 基金资助:

    *国家973重点基础科学基金资助项目;国家自然科学基金资助项目;上海市重点学科建设资助项目

Non-Covalent Separation of Metallic and Semiconducting Single-Walled Carbon Nanotubes

Lin Gaofeng;  Meng Lingjie**; Zhang Xiaoke;  Lu Qinghua   

  1. (School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China)
  • Received:2009-04-20 Revised:2009-06-18 Online:2010-03-24 Published:2010-03-18
  • Contact: Meng Lingjie E-mail:menglingjie@sjtu.edu.cn
  • Supported by:

    ;NSFC

目前商品化生产的单壁碳纳米管(SWNTs)都是金属型和半导体型碳管的混合物,这极大的限制了它在微电子等领域的研究和应用。非共价分离方法既能保持SWNTs特有的电子结构又可实现可逆分离,是目前研究最多的分离方法。本文在在介绍SWNTs的结构与导电性能关系的基础上,概述了金属型和半导体型SWNTs的表征原理和方法,并对各种非共价分离SWNTs的方法进行了综述和比较。

The coexistence of metallic and semiconducting single-walled carbon nanotubes (SWNTs) in commercial available products imposes limitations on their investigation and applications in many fields such as microelectronic devices. Non-covalent separations can preserve the pristine electronic structure and unique properties of both metallic and semiconducting SWNTs, with some of which even realize reversible separations. In this paper, the relationship between the structure and electrical properties of SWNTs is briefly introduced. We also review the characterization methods and the non-covalent separation methods of metallic and semiconducting SWNTs.

Contents
1 Introduction
2 The structure and electronic properties of SWNTs
3 Characterization of metallic and semiconducting SWNTs
3.1 Raman spectroscopy
3.2 Fluorescence spectroscopy
3.3 UV-Vis-NIR spectroscopy
3.4 Electrical measurement
4 Non-covalent methods to separate metallic and semiconducting SWNTs
4.1 Surfactants encapsulation
4.2 Amine adsorption
4.3 Small aromatic molecule complex
4.4 Conjugated polymers wrapping
4.5 DNA wrapping
5 Conclusion

中图分类号: 

()

[ 1 ]  Lijima S, Lchihashi T. Nature, 1993, 363 (6430) : 603—605
[ 2 ]  Bethune D S, Klang C H, DevriesM S, et al. Nature, 1993, 363 (6430) : 605—607
[ 3 ]  Baughman R H, Zakhidov A A, Heer W A, et al. Science, 2002, 297 (5582) : 787—792
[ 4 ]  White C T, Mintmire J W. J. Phys. Chem. B, 2005, 109 (1) : 52—65
[ 5 ]  Ebbesen T W, Ajayan P M. Nature, 1992, 358 (6383) : 220—222
[ 6 ]  Guo T, Nikolaev P, Smalley R E, et al. Chem. Phys. Lett. , 1995, 243 (1 /2) : 49—54
[ 7 ]  Endo M, Takeuchi K, Igarashi S, et al. J. Phys. Chem. Solids. , 1993, 54 (12) : 1841—1848
[ 8 ]  Dai H. Acc. Chem. Res. , 2002, 35 (12) : 1035—1044
[ 9 ]  Tans S J, Devoret M H, Dai H, et al. Nature, 1997, 386 (6624) : 474—477
[ 10 ]  Mintmire J W, Dunlap B I, White C T. Phys. Rev. Lett. , 1992, 68 (5) : 631—634
[ 11 ]  Zhang L, Sasa Z, Dai H, et al. J. Am. Chem. Soc. , 2008, 130 (8) : 2686—2691
[ 12 ]  Hersam M C. Nat. Nanotech. , 2008, 3 (7) : 387—394
[ 13 ]  Martel R. ACS Nano, 2008, 2 (11) : 2195—2199
[ 14 ]  Miyata Y, Maniwa Y, Kataura H. J. Phys. Chem. B, 2006, 110 (1) : 25—29
[ 15 ]  Sarbajit B, Stanislaus S. J. Am. Chem. Soc. , 2004, 126 (7) : 2073—2081
[ 16 ]  Yang C M, Park J S, Lee Y H, et al. J. Phys. Chem. B, 2005, 109 (41) : 19242—19248
[ 17 ]  Nitish N, Kim W, Strano M S, et al. J. Am. Chem. Soc. , 2007, 129 (13) : 3946—3954
[ 18 ]  Zhang H L, Liu Y Q, Cao L C, et al. Adv. Mater. , 2009, 21 (7) : 813—816
[ 19 ]  Zhang Y Y, Zhang Y, Zhang J, et al. J. Phys. Chem. C, 2008, 112 (10) : 3849—3856
[ 20 ]  Weisman R B, Bachilo S M, Tsyboulski D. App l. Phys. A, 2004, 78 (8) : 1111—1116
[ 21 ]  Lisa J C, Todd D K. Acc. Chem. Res. , 2008, 41 (2) : 235—243
[ 22 ]  Izard N, Kazaoui S, Okazaki T, et al. App l. Phys. Lett. , 2008, 92 (24) : art. no. 243112
[ 23 ]  Dresselhaus M S, Dresselhaus G, Jorio A, et al. Acc. Chem. Res. , 2002, 35 (12) : 1070—1078
[ 24 ]  Okazaki T, Saito T, Matsuura K, et al. Nano Lett. , 2005, 5 (12) : 2618—2623
[ 25 ]  Zhang L, Tu X M, Dai H, et al. J. Am. Chem. Soc. , 2009, 131 (7) : 2454—2455
[ 26 ]  Kataura H, Kumazawaa Y, Maniwaa Y, et al. Synth. Met. , 1999, 103 (1 /3) : 2555—2558
[ 27 ]  Strano M S. J. Am. Chem. Soc. , 2003, 125 ( 51 ) : 16148—16153
[ 28 ]  Weisman R B, Bachilo M S. Nano Lett. , 2003, 3 (9) : 1235—1238
[ 29 ]  Strano M S, Doorn S K, Smalley R E, et al. Nano Lett. , 2003, 3 (8) : 1091—1096
[ 30 ]  Bachilo S M, StranoM S, Kittrell C, et al. Science, 2002, 298 (5602) : 2361—2366
[ 31 ]  Stephane C, Moreno M, Maurizio P. Small, 2007, 3 ( 10 ) : 1672 —1676
[ 32 ]  Hennrich F, Lebedkin S, Kappes M M. Phys. Stat. Sol. B, 2008, 245 (10) : 1951—1953
[ 33 ]  Li X L, Tu X M, Dai H, et al. J. Am. Chem. Soc. , 2007, 129 (51) : 15770—15771
[ 34 ]  Ralph K, Frank H, Manfred M K, et al. Nano Lett. , 2004, 4 (8) : 1395—1399
[ 35 ]  Arnold M S, Green A A, Hersam M C, et al. Nat. Nanotech. , 2006, 1 (1) : 60—65
[ 36 ]  Wei L, Wang B, Chen Y, et al. J. Phys. Chem. B, 2008, 112 (10) : 2771—2774
[ 37 ]  Maeda Y, Kimura S, Hasegawa T, et al. J. Am. Chem. Soc. , 2005, 127 (29) : 10287—10290
[ 38 ]  Maeda Y, Kanda M, Hasegawa T, et al. J. Am. Chem. Soc. , 2006, 128 (37) : 12239—12242
[ 39 ]  Debjit C, Izabela G, Fotios P. J. Am. Chem. Soc. , 2003, 125 (11) : 3370—3375
[ 40 ]  Kong J, Dai H. J. Phys. Chem. B, 2001, 105 ( 15 ) : 2890—2893
[ 41 ]  Li H P, Zhou B, Sun Y P, et al. J. Am. Chem. Soc. , 2004, 126 (4) : 1014—1015
[ 42 ]  Kauffman D R, Kuzmych O, StarA. J. Phys. Chem. C, 2007, 111 (9) : 3539—3543
[ 43 ]  Shin H J, Kim S M, Lee Y H, et al. J. Am. Chem. Soc. , 2006, 128 (15) : 5114—5118
[ 44 ]  Hwang J Y, Nish A, Nicholas R J, et al. J. Am. Chem. Soc. , 2008, 130 (11) : 3543—3553
[ 45 ]  Robert C H. Acc. Chem. Res. , 1988, 21 (6) : 243—249
[ 46 ]  Tournus F, Latil S, HeggieM I, et al. Phys. Rev. B, 2005, 72 (7) : art. no. 075431
[ 47 ]  Nish A, Hwang J Y, Nicholas R J, et al. Nat. Nanotech. , 2007, 2 (10) : 640—646
[ 48 ]  Chen F M, Wang B, LiL J, et al. Nano Lett. , 2007, 7 (10) : 3013—3017
[ 49 ]  YiW H, Malkovskiy A, Pang Y, et al. J. Phys. Chem. B, 2008, 112 (39) : 12263—12269
[ 50 ]  Strano M S, Zheng M, Jatota A, et a1. Nano Lett. , 2004, 4 (4) : 543—550
[ 51 ]  Arnold M S, Stupp S I, Hersam M C. Nano Lett. , 2005, 5 (4) : 713—718
[ 52 ]  Zheng M, Jatota A, Semke E D, et al. Nat. Mater. , 2003, 2 (5) : 338—342
[ 53 ]  Zheng M, Semke E D. J. Am. Chem. Soc. , 2007, 129 (19) : 6084—6085

[1] 杜宇轩, 江涛, 常美佳, 戎豪杰, 高欢欢, 尚玉. 基于非稠环电子受体的有机太阳能电池材料与器件[J]. 化学进展, 2022, 34(12): 2715-2728.
[2] 李庚, 李洁, 姜泓宇, 梁效中, 郭鹍鹏. 力刺激响应发光聚合物[J]. 化学进展, 2022, 34(10): 2222-2238.
[3] 朱彬彬, 郑晓慧, 杨光, 曾旭, 邱伟, 徐斌. 氧化石墨烯分离膜机械性能调控[J]. 化学进展, 2021, 33(4): 670-677.
[4] 张丹维, 王辉, 黎占亭. 芳香大分子和超分子螺旋管构筑及其功能[J]. 化学进展, 2020, 32(11): 1665-1679.
[5] 高玉霞, 梁云, 胡君, 巨勇. 基于天然小分子化合物的超分子手性自组装[J]. 化学进展, 2018, 30(6): 737-752.
[6] 陈盼盼, 史兵兵*. 基于大环主体构筑的超分子载药体系[J]. 化学进展, 2017, 29(7): 720-739.
[7] 李俊同, 霍延平, 刘梦娟, 曾华强. 可用于溢油处理的相选择性有机胶凝剂[J]. 化学进展, 2017, 29(6): 617-627.
[8] 李昱达, 王迅昶, 吕仁亮, 汪锋. 非共价法分离光学活性单壁碳纳米管[J]. 化学进展, 2014, 26(08): 1361-1368.
[9] 熊雨婷, 李闵闵, 熊鹏, 杨梦, 卿光焱, 孙涛垒. 水相中糖识别人工受体[J]. 化学进展, 2014, 26(01): 48-60.
[10] 蒋邦平, 郭东升, 刘育*. 苝酰亚胺和大环化合物的超分子组装[J]. 化学进展, 2013, 25(06): 869-880.
[11] 王海波, 赵猛, 计亮年, 毛宗万*. 具有非共价相互作用的金属酶模拟物[J]. 化学进展, 2013, 25(04): 577-588.
[12] 何乃普, 王荣民. 蛋白质与高分子的自组装[J]. 化学进展, 2012, 24(01): 94-100.
[13] 夏文健, 孟令杰, 刘丽, 路庆华. 贵金属纳米粒子修饰碳纳米管的研究[J]. 化学进展, 2010, 22(12): 2298-2308.
[14] 刘勤,张淑珍,吴弼东,申睿,谢剑炜,刘克良. 电喷雾质谱在手性识别和分析中的应用*[J]. 化学进展, 2006, 18(06): 780-788.
[15] 柴立和,彭晓峰. 来自化学前沿的挑战:动态自组装*[J]. 化学进展, 2004, 16(02): 169-.