English
新闻公告
More
化学进展 2023, Vol. 35 Issue (1): 135-156 前一篇   后一篇

• 综述 •

自修复有机硅材料的制备策略

叶娟1, 林子谦1, 李伟健1, 向洪平1,*(), 容敏智2, 章明秋2   

  1. 1 广东工业大学材料与能源学院 广东省功能软凝聚态物质重点实验室 广州 510006
    2 中山大学化学学院 广东省高性能树脂基复合材料重点实验室 聚合物复合材料及功能材料教育部重点实验室 广州 510275
  • 收稿日期:2022-05-31 修回日期:2022-06-30 出版日期:2023-01-24 发布日期:2022-08-30
  • 作者简介:

    向洪平 博士,2015年博士毕业于中山大学化学化工学院高分子物理与化学专业,2017年在美国罗格斯大学访问学者,2018年以“特聘副教授”入职广东工业大学材料与能源学院。主要研究方向为可自修复和可塑再生聚合物材料、高性能(水性)光敏树脂等。在科研上,主持科研课题10余项,其中国家自然科学青年基金项目1项,省部级项目3项,产学研项目7项,以第一或通讯作者发表SCI论文30篇,共申请发明专利10余件,已授权发明专利5件。

  • 基金资助:
    国家自然科学基金项目(52033011); 国家自然科学基金项目(52273104); 广东省基础与应用基础研究基金(2022A1515011972)

Fabrication Strategies to Self-Healing Silicone Materials

Juan Ye1, Ziqian Lin1, Weijian Li1, Hongping Xiang1(), Minzhi Rong2, Mingqiu Zhang2   

  1. 1 Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology,Guangzhou 510006, China
    2 Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer Based Composites of Guangdong Province, School of Chemistry, Sun Yat-sen University,Guangzhou 510275, China
  • Received:2022-05-31 Revised:2022-06-30 Online:2023-01-24 Published:2022-08-30
  • Contact: *e-mail: xianghongping@gdut.edu.cn
  • Supported by:
    National Natural Science Foundation of China(52033011); National Natural Science Foundation of China(52273104); Guangdong Basic and Applied Basic Research Foundation(2022A1515011972)

近年来,通过仿生生命体自我修复损伤这一现象而研制的自修复材料,可有效延长材料的使用寿命、提高材料的使用安全性、降低资源浪费,具有巨大的发展潜力。其中,自修复有机硅材料因兼具自我修复的功能和有机硅材料的优异性能,已成为当下的研究热点。由于外界刺激条件如紫外光、温度等是材料实现损伤自我修复的外在驱动力,在很大程度上影响着材料的修复效能,且不同的刺激条件具有不同的优缺点和应用领域。因此,本文将基于自修复过程中外界刺激因素的不同,对自修复有机硅材料尤其是近五年来的最新研究成果进行综述,从外援型和本征型自修复有机硅材料两方面入手,以本征型自修复有机硅材料为重点,并对自修复有机硅材料今后的发展进行了分析展望。

In recent years, inspired by the natural phenomenon that the living organism can automatically repair its damaged skin and bone via itself metabolism, researchers have successfully developed self-healing materials that can self-heal their microcracks. The self-healing of materials can effectively extend the service life of materials, improve working stability and thus reduce the waste of resources. Recently, the self-healable silicone materials originated from the synergistic combination of self-healing function and good properties of silicone materials, have become a research focus in functional materials. Furthermore, since the external stimuli such as UV irradiation, temperature and solvent are the external driving force for materials to fulfill self-healability, and affect largely the self-healing efficiency. More importantly, different stimuli have different advantages and disadvantages, and application fields. Therefore, this study aims to summarize and analyze the research progress of extrinsic and intrinsic self-healing silicone materials especially in the past five years according to their external stimuli. The intrinsic self-healing silicone materials that contain different dynamic polysiloxane crosslinking networks activated by different external stimuli, are emphatically discussed. Additionally, a brief prospect for the future development of self-healing silicone materials is also provided.

Contents

1 Introduction

2 Extrinsic self-healing silicone materials

2.1 Hydrolytic condensation crosslinking

2.2 Hydrosilylation crosslinking

2.3 Photo-crosslinking

3 Intrinsic self-healing silicone materials

3.1 Thermal-activated self-healing silicone materials

3.2 Photo-activated self-healing silicone materials

3.3 Medium-driven self-healing silicone materials

4 Conclusion and outlook

()
图1 (a)微胶囊型自修复机理:裂纹形成,微胶囊破裂并释放愈合剂,愈合剂与催化剂反应使裂纹闭合[19];(b)本征型自修复中不同动态可逆结构的示意图[25]
Fig. 1 (a) Mechanism of microcapsule self-healing materials: crack formation, the microcapsule breaking and releasing the healing agent, and the healing agent reacting with catalyst to realize healing[19]; (b) schematic diagram of different dynamic reversible structures used in intrinsic self-healing materials[25]
图2 (a)MUF成壳反应示意图及DBTL催化下PDMS的缩聚反应;(b)双微囊一体化有机硅复合材料在室温下24 h后的自愈合性能[27]
Fig. 2 (a) Schematic illustration of the melamine-urea-formaldehyde shell-forming reaction and condensation polymerization of PDMS in the presence of the DBTL catalyst; (b) self-healing of the dual-microcapsule-integrated silicone composite at room temperature for 24 h after cracking[27]
图3 (a)双微胶囊系统的自修复过程示意图;(b)Sylgard 184 Part A与含氢硅油的硅氢加成交联反应[29]
Fig. 3 (a) The self-healing procedures with dual capsule systems; (b) the crosslinking reaction between Sylgard 184 Part A and hydrogen silicone oil by hydrosilylation[29]
图4 埋植CS-RGO微胶囊的有机硅树脂的修复机理图[31]
Fig. 4 Mechanism of self-healing silicone resin with CS-RGO microcapsules[31]
图5 基于不同刺激响应的本征型自修复有机硅材料
Fig. 5 Intrinsic self-healing silicone materials based on different stimulus-response factors
图6 (a)PDMS-PUa的合成;(b)具有5.0 wt% DCOIT的PDMS-PUa在室温下的自修复过程;(c)涂覆PDMS-PUa/DCOIT 的测试面板在海水中浸泡180天后的图像[43]
Fig. 6 (a) Synthesis of PDMS-PUa; (b) self-repairing process of PDMS-PUa with 5.0 wt% DCOIT at room temperature; (c) images of the tested panels coated with PDMS-PUa/DCOIT after immersion in seawater for 90 and 180 d[43]
图7 (a)PDPU弹性体的化学结构;(b)PDPU自修复的显微镜图像;(c)基于PDPU的气-固相互作用摩擦纳米发电机修复前后的输出电压;(d)基于PDPU的自供电电子皮肤的传感性能[44]
Fig. 7 (a) The chemical structure of PDPU elastomer; (b) the microscope images of self-healing PDPU; (c) output voltages of gaS-Solid interacted triboelectric nanogenerators based on the PDPU before damage and after healing; (d) the sensing performance of self-powered electronic skin based on PDPU[44]
图8 基于多重氢键可逆解离/缔合的有机硅弹性体的修复示意图[46]
Fig. 8 Self-healing mechanism of PDMS elastomer based on reversible dissociation/association of multivalent hydrogen bonds[46]
图9 (a)含有DA键的聚硅氧烷弹性体PMFS 的制备;(b)PMFS的修复过程示意图[48]
Fig. 9 (a) Preparation of polysiloxane elastomer PMFS containing DA bonds; (b) schematic illustration of self-healing process[48]
图10 (a)合成具有反应性单元的有机硅低聚物;(b)石墨烯增强聚硅氧烷纳米复合材料的愈合过程示意图[50]
Fig. 10 (a) Synthesis of silicone oligomer with reactive motifs; (b) illustration of self-healing within the graphene-reinforced polysiloxane nanocomposite[50]
图11 (a)不同温度下PDMS-COO-Zn聚合物网络的结构示意图;(b)薄膜在80℃下愈合4 h之前(左)和之后(右)的显微图像;(c)PDMS-COO-Zn聚合物打印的各种物体及其应用[57]
Fig. 11 (a) Schematic structure of the PDMS-COO-Zn polymer network at different temperatures;(b) microscopic images of a film before (left) and after (right) healing at 80 ℃ for 4 h;(c) objects printed by PDMS-COO-Zn polymer and their applications[57]
图12 (a)Zn(Hbimcp)2-PDMS的结构图;(b)[Zn(Hbimcp)2]2+的两个能量耗散过程;(c)薄膜拉伸前后的照片;(d)承受1000 g负载的薄膜的照片[58]
Fig. 12 (a) The structure of polymer complex Zn(Hbimcp)2-PDMS; (b) energy dissipation process for [Zn(Hbimcp)2]2+; (c) photographs of a film before and after stretching; (d) optical image of a film sustaining a 1000 g load[58]
图13 (a)基于亚胺键动态交联PDMS弹性体;(b)弹性体的修复机制、回收实验和水驱动延展性实验[63]
Fig. 13 (a) The dynamic crosslinked PDMS elastomer; (b) mechanisms of recycling and water-driven malleability[63]
图14 (a)由PDMS-g-COOH和ZnO制备离子键合的弹性体;(b)弹性体的自修复过程,原始(左)、切割(中)和重新热压(右)样品;(c)修复样品的拉伸图像[65]
Fig. 14 (a) Preparation of ionically crosslinked elastomers from PDMS-g-COOH and ZnO; (b) Self-healing images of the original (left), cut (middle) and re-hot-pressed (right) samples; (c) Stretching images of healed PDMS elastomer[65].
图15 (a)有机硅弹性体的紫外光/热双交联网络示意图;(b)双交联弹性体的固相再生及自修复示意图[66]
Fig. 15 (a) Schematic illustration of UV/thermal dual crosslinked silicone elastomers; (b) photographs for the self-healing and reprocessing of the silicone elastomers[66]
图16 (a)PDMS-PU弹性体的制备过程;(b)加热条件下自由基诱导二硫键交换反应的自修复机理示意图[74]
Fig. 16 (a) Synthesis process of PDMS-PU elastomer; (b) schematic illustration of the self-healing process within the PDMS-PU elastomer based on radical-mediated disulfide bonds exchange reaction under heating[74]
图17 (a)PIH的合成路线;(b)基于二硫化物复分解反应的PIH弹性体自愈过程示意图,切成两半的PIH-12.5薄膜在25℃下修复3 h可举起50 g的质量;(c)在丁烷火焰烧蚀下具有快速室温自愈功能的 PIH 复合材料[76]
Fig. 17 (a) Synthetic route of PIH;(b)schematic diagram of self-healing process of PIH elastomer based on disulfide metathesis reaction. The dyed PIH-12.5 was cut in half, and self-healed for 3 h at 25 ℃. The healed film can load a mass of 50 g. (c) PIH composites with rapid room temperature self-healing function under the ablation of butane flame[76]
图18 (a)有机硅弹性体的合成策略和结构示意图;(b)原始方形样品被切成几块后愈合并被拉伸[79]
Fig. 18 (a) Schematic representation of the self-healing process of PDMS elastomer; (b) self-healing illustration of square sample cut into several pieces and healed sample being stretched[79]
图19 (a)含TEA的聚倍半硅氧烷网络中Si—O—Si的可逆性;(b)激光共聚焦显微镜(LSCM)图像显示划痕的自愈过程(平均宽度为50 μm)[80]
Fig. 19 (a) Reversibility of Si—O—Si bonds in poly(silsesquioxane) containing TEA; (b) LSCM images showing the self-healing process of a scratch (50 μm in average width)[80]
图20 (a)基于π-π堆积作用的共混物自修复机制示意图;(b)共混物在温度升高时断裂面的SEM图像[81]
Fig. 20 (a) Schematic representation of the self-healing mechanism for the blend based on π-π stacking; (b) SEM images of the fractured film under increasing temperature[81]
图21 (a)基于强、弱交联氢键和二硫键复分解的超分子聚合物网络的理想结构;(b)自愈后的可实现高倍拉伸(左)薄膜在-10℃的30%NaCl溶液中的自修复(右)[91]
Fig. 21 (a) The proposed ideal structure of the supramolecular polymer network based on strong crosslinking H-bonds, weak crosslinking H-bonds, and disulfide metathesis; (b) photographs of film after self-healing and enabling high stretchability (left) and (right) self-healing of film in a 30% NaCl solution at -10 ℃[91]
图22 PDMS-SS-DOPA-Fe的修复机制及基于柔性PDMS-SS-DOPA1-Fe2的应变传感器的性能[92]
Fig. 22 Mechanism of self-healing PDMS-SS-DOPA-Fe material and the performance of the flexible PDMS-SS-DOPA1-Fe2-based strain sensor[92]
图23 (a)基于双重不对称动态交联链结构的自修复有机硅弹性体(PDETAS-FBA)的制备;(b)PDETAS-FBA弹性体的自修复及固相再生[24]
Fig. 23 (a) Preparation of self-healing silicone elastomers (PDETAS-FBA) based on dual asymmetric dynamic cross-linked chain structure; (b) the self-healing and reprocessing of PDETAS-FBA[24]
图24 (a)含二硫键的有机硅弹性体的制备过程;(b)材料在太阳光辐照下的固相回收过程[99]
Fig. 24 (a) Synthesis process of the crosslinked silicone elastomer containing disulfide bonds; (b) silicone elastomer recycled in solid state under sunlight[99]
图25 (a)二硫键连接的SEs的合成;(b)SE-3在紫外光(365 nm)下30 min(ⅰ)或在150℃下加热2 h(ⅱ)的自修复实验;(c)黏合性能测试[100]
Fig. 25 (a) Synthesis of disulfide-linked SEs; (b) self-repairing experiments of SE-3 under UV light (365 nm) for 30 min (ⅰ) or heating at 150 ℃ for 2 h (ⅱ); (c) bonding performance test[100]
图26 Zn(abpy)2-PDMS的光修复过程示意图[101]
Fig. 26 The schematic diagram of light-healing process of Zn(abpy)2 -PDMS[101]
图27 水促进修复过程的机制示意图[104]
Fig. 27 Mechanism of the water-enabled healing process[104]
图28 (a)CO2气体加速离子聚集体的网络重排; (b)樱花形PDMS-75Na薄膜在26℃下的自愈行为[105]
Fig. 28 (a) Plasticization of ionic aggregate by CO2 gas activiated network rearrangement; (b) photograph of self-healing behavior of cherry blossom-shaped PDMS-75Na film at 26 ℃[105]
[1]
Marc P W, Georgette B S, Patrick H. Prog. Polym. Sci., 2018, 83: 97.

doi: 10.1016/j.progpolymsci.2018.06.001     URL    
[2]
Yilgör E, Yilgör I. Prog. Polym. Sci., 2014, 39: 1165.

doi: 10.1016/j.progpolymsci.2013.11.003     URL    
[3]
Markvicka E J, Bartlett M D, Huang X N, Majidi C. Nat. Mater., 2018, 17: 618.

doi: 10.1038/s41563-018-0084-7     pmid: 29784995
[4]
He W Q, Liu P, Zhang J Q, Yao X. Chem-Eur. J., 2018, 24(56): 14864.

doi: 10.1002/chem.201801368     URL    
[5]
Emel Y, Iskender Y. Prog. Polym. Sci., 2014, 39(6): 1165.

doi: 10.1016/j.progpolymsci.2013.11.003     URL    
[6]
Mazurek P, Vudayagiri S, Skov A L. Chem. Soc. Rew., 2019, 48(6): 1448.

doi: 10.1039/C8CS00963E     URL    
[7]
Mohammed M G, Kramer R. Adv. Mater., 2017, 29(19): 1604965.

doi: 10.1002/adma.201604965     URL    
[8]
Mazurek P, Brook M A, Skov A L. Langmuir, 2018, 34(38): 11559.

doi: 10.1021/acs.langmuir.8b02039     pmid: 30153731
[9]
Zhou H, Wang H X, Niu H T, Gestoss A, Wang X G, Lin T. Adv. Mater., 2012, 24(18): 2409.

doi: 10.1002/adma.201200184     URL    
[10]
Khoo C T K. J. Hand. Surg., 1993, 18(6): 679.
[11]
Cheng L, Yu D J, You J J, Long T, Chen S S, Zhou C J. Prog. Chem., 2018, 30(12): 1852.

doi: 10.7536/PC180312    
(程龙, 于大江, 尤加健, 龙腾, 程素素, 周传健. 化学进展,2018, 30(12): 1852.).
[12]
Ying Y, Marek W U. Chem. Soc. Rev., 2014, 42(17): 7446.

doi: 10.1039/c3cs60109a     URL    
[13]
Zhang F, Ju P F, Pan M Q, Zhang D W, Huang Y, Li G L, Li X G. Corros. Sci., 2018, 144: 74.

doi: 10.1016/j.corsci.2018.08.005     URL    
[14]
Yang Y, Ding X C, Urban M W. Prog. Polym. Sci., 2015, 49: 34.
[15]
Ryan K R, Down M P, Banks C E. Chem. Eng. J., 2021, 403: 126162.

doi: 10.1016/j.cej.2020.126162     URL    
[16]
You Y, Peng W L, Xie P, Rong M Z, Zhang M Q, Liu D. Mater. Today, 2020, 33: 45.

doi: 10.1016/j.mattod.2019.09.005     URL    
[17]
Zhang M Q. Chinese J. Polym. Sci., 2022, 40: 1315.

doi: 10.1007/s10118-022-2870-6     URL    
[18]
Wang S, Urban M W. Nat. Rev. Mater., 2020, 5: 562.

doi: 10.1038/s41578-020-0202-4     URL    
[19]
Yuan Y C, Yin T, Rong M Z, Zhang M Q. Express Polym. Lett., 2008, 2: 238.

doi: 10.3144/expresspolymlett.2008.29     URL    
[20]
Xia D Y, Wang P, Ji X F, Khashab N M, Sessler J L, Huang F H. Chem. Rev., 2020, 120 (13): 6070.

doi: 10.1021/acs.chemrev.9b00839     URL    
[21]
Chakma P, Konkolewicz D. Angew. Chem. Int. Ed., 2019, 58(29): 9682.

doi: 10.1002/anie.201813525     URL    
[22]
Liu Z, Xiao D S, Liu G C, Xiang H P, Rong M Z, Zhang M Q. Prog. Org. Coat., 2021, 159: 106450.
[23]
Yi B, Wang S, Hou C S, Huang X, Cui J X, Yao X. Chem. Eng. J., 2021, 405: 127023.

doi: 10.1016/j.cej.2020.127023     URL    
[24]
Lin Z Q, Deng H Y, Hou Y, Liu X X, Xu R J, Xiang H P, Peng Z Q, Rong M Z, Zhang M Q. J. Mater. Chem. A, 2022, 10(20): 11019.

doi: 10.1039/D2TA01535H     URL    
[25]
Dahlke J, Zechel S, Hager M D, Schubert U S. Adv. Mater. Interfaces, 2018, 5(17): 1800051.

doi: 10.1002/admi.201800051     URL    
[26]
Rao Q Q, Chen K L, Wang C X. RSC Adv., 2016, 6(59): 53949.

doi: 10.1039/C6RA09582H     URL    
[27]
Anahita A, Reza J, Gelareh M. J. Appl. Polym. Sci., 2021, 139(8): 51670.

doi: 10.1002/app.51670     URL    
[28]
Michael W K, Sottos R W, Nancy R S. Adv. Funct. Mater., 2007, 17(14): 2399.

doi: 10.1002/adfm.200700086     URL    
[29]
Yin Z H, Guo J H, Qiao J X, Chem X M. Colloid Polym. Sci., 2020, 298(1): 67.

doi: 10.1007/s00396-019-04587-2     URL    
[30]
Song Y K, Jo Y H, Lim Y J, Cho S Y, Yu H C, Ryu B C, Lee S I, Chung C M. ACS. Appl. Mater. Inter., 2013, 5(4): 1378.

doi: 10.1021/am302728m     URL    
[31]
Zheng N, Liu J, Wang Y H, Li C M, Zhang Q Y. Prog. Org. Coat., 2021, 151: 106055.
[32]
Sun J Y, Li W, Li N, Zhan Y C, Tian L M, Wang Y M. Prog. Org. Coat., 2022, 164: 106689.
[33]
Islam S, Bhat G. Mater. Adv., 2021, 2(6): 1896.

doi: 10.1039/D0MA00873G     URL    
[34]
Gharakhloo M, Karbarz M. Eur. Polym. J., 2022, 165: 111004.

doi: 10.1016/j.eurpolymj.2022.111004     URL    
[35]
Li M, Dai S P, Dong X, Jiang Y Y, Ge J, Xu Y D, Yuan N Y, Ding J N. Langmuir, 2022, 38(4): 1560.

doi: 10.1021/acs.langmuir.1c03010     URL    
[36]
Luo X, Wu Y P, Guo M L, Yang X, Xie L Y, Lai J J, Li Z Y, Zhou H W. J. Appl. Polym. Sci., 2021, 18(33): 50827.
[37]
Zhang J S, Zhang C Q, Song F, Shang Q Q, Hu Y, Jia P U, Liu C G, Hu L H, Zhu G Q, Huang J, Zhou Y H. Chem. Eng. J., 2021, 429: 131848.

doi: 10.1016/j.cej.2021.131848     URL    
[38]
Chen J, Luo Z Y, An R, Marklund P, Bjorling M, Shi Y J. Small, 2022, 18: 2200532.

doi: 10.1002/smll.202200532     URL    
[39]
Chen M F, Liu Y Q, Wang J, Bai L J, Wang W X, Yang H W, Wei D L. Journal Ludong University, 2018, 34(02): 150.
(陈密发, 刘永泉, 王静, 柏良久, 王文香, 杨华伟, 魏东磊. 鲁东大学学报(自然科学版), 2018, 34(02): 150.).
[40]
Zhao L P, Li L S, Yang G, Wei B, Ma Y, Qu F. Biosens. Bioelectron., 2021, 194: 113597.

doi: 10.1016/j.bios.2021.113597     URL    
[41]
Shi J Z, Shi Z W, Dong Y C, Wu F, Liu D S. ACS. Appl. Bio. Mater., 2020, 3(5): 2827.

doi: 10.1021/acsabm.0c00081     URL    
[42]
Chen L, Peng H, Wei Y Y, Wang X Y, Jin Y J, Liu H T, Jiang Y. Macromol. Chem. Phys., 2019, 220(18): 1900280.

doi: 10.1002/macp.201900280     URL    
[43]
Liu C, Ma C F, Xie Q Y, Zhang G Z. J. Mater. Chem. A, 2017, 5(30): 15855.

doi: 10.1039/C7TA05241C     URL    
[44]
Xiong J Q, Thangavel G, Wang J X, Zhou X R, Lee P S. Sci. Adv., 2020, 6(29): 4246.
[45]
Ogliani E., Yu L., Javakhishvili I, Skov A L. RSC Adv., 2018, 8(15): 8285.

doi: 10.1039/C7RA13686B     URL    
[46]
Liu M J, Liu P, Lu G, Lu G, Xu Z T, Yao X. Angew. Chem. Int. Ed., 2018, 57(35): 11242.

doi: 10.1002/anie.201805206     URL    
[47]
Kuhl N, Bode S, Hager M D, Schubert U S. Adv. Polym. Sci., 2016, 273: 1.
[48]
Zhao J, Xu R, Luo G X, Wu J, Xia H S. J. Mater. Chem. B, 2016, 4(5): 982.

doi: 10.1039/C5TB02036K     URL    
[49]
Wang J K, Lv C, Li Z X, Zheng J P. Macromol. Mater. Eng., 2018, 303(6): 1800089.

doi: 10.1002/mame.201800089     URL    
[50]
Zhao L W, Jiang B, Huang Y D. J. Mater. Sci., 2019, 54(7): 5472.

doi: 10.1007/s10853-018-03233-6     URL    
[51]
Zhao L W, Jiang B, Huang Y D. J. Appl. Polym. Sci., 2019, 136(27): 47725.

doi: 10.1002/app.47725     URL    
[52]
Deng Z X, Wang H, Ma P X, Guo B L. Nanoscale, 2020, 12(3): 1224.

doi: 10.1039/C9NR09283H     URL    
[53]
Xu X W, Guyse J F R, Jerca V V, Hoogenboom R. Macromol. Rapid Commun., 2020, 41(1): 1900305.

doi: 10.1002/marc.201900305     URL    
[54]
Chen Y, Dai S, Zhu H, Hu H, Yuan N, Ding J. New. J. Chem., 2021, 45(1): 314.

doi: 10.1039/D0NJ04923A     URL    
[55]
Jia X Y, Mei J F, Lai J C, Li C H, You X Z. Macromol. Rapid Commun., 2016, 37(12): 952.

doi: 10.1002/marc.201600142     URL    
[56]
Rao Y L, Chortos A, Pfattner R, Lissel F, Chiu Y C, Feig V, Xu J, Kurosawa T, Gu X, Wang, C, He M Q, Chun J W. J. Am. Chem. Soc., 2016, 138(18): 6020.

doi: 10.1021/jacs.6b02428     URL    
[57]
Lai J C, Li L, Wang D P, Zhang M H, Mo S R, Wang X, Zeng K Y, Li C H, Jiang Q, You X Z, Zuo J L. Nat. Commun., 2018, 9(1): 2725.

doi: 10.1038/s41467-018-05285-3     pmid: 30006515
[58]
Lai J C, Jia X Y, Wang D P, Deng Y B, Zheng P, Li C H, Zuo J L, Bao Z N. Nat. Commun., 2019, 10(1): 1164.

doi: 10.1038/s41467-019-09130-z     URL    
[59]
Bai L, Qv P Y, Zheng J P. J. Mater. Sci., 2020, 55(28): 14045.

doi: 10.1007/s10853-020-04997-6     URL    
[60]
Tan H Y, Lyu Q Q, Xie Z J, Li M M, Wang K, Wang K, Xiong B J, Zhang L B, Zhu J T. Adv. Mater., 2019, 31(6): 1805496.
[61]
Zhang B L, Zhang P, Zhang H Z, Yan C, Zheng Z J, Wu B, Yu Y. Macromol. Rapid Commun., 2017, 38(15): 1700110.

doi: 10.1002/marc.201700110     URL    
[62]
Lei X Y, Huang Y W, Liang S, Zhao X L, Liu L L. Mater. Lett., 2020, 268: 127598.

doi: 10.1016/j.matlet.2020.127598     URL    
[63]
Feng Z B, Yu B, Hu J, Zuo H L, Li J P, Sun H B, Ning N Y, Tian M, Zhang L Q. Ind. Eng. Chem. Res., 2019, 58(3): 1212.

doi: 10.1021/acs.iecr.8b05309     URL    
[64]
Wang N, Feng L, Xu X D, Feng S Y. Macrom. Rapid Commun., 2022, 43(7): 2100885.

doi: 10.1002/marc.202100885     URL    
[65]
Shi J, Zhao N, Yan D, Song J, Fu W, Li Z. J. Mater. Chem. A, 2020, 8(12): 5943.

doi: 10.1039/D0TA01593H     URL    
[66]
Liu Z, Hong P, Huang Z Y, Zhang T, Xu R J, Chen L J, Xiang H P, Liu X X. Chem. Eng. J., 2020, 387: 124142.

doi: 10.1016/j.cej.2020.124142     URL    
[67]
Guo R W, Su Q, Zhang J W, Dong A J, Lin C G, Zhang J H. Biomacromolecules, 2017, 18(4): 1356.

doi: 10.1021/acs.biomac.7b00089     URL    
[68]
Deng G H, Li F Y, Yu H X, Liu F Y, Liu C Y, Sun W X, Jiang H F, Chen Y M. ACS Macro. Lett., 2012, 1(2): 275.

doi: 10.1021/mz200195n     URL    
[69]
Zhang Y D Y, Ding Z Y, Liu Y, Zhang Y P, Jiang S M. J. Colloid Interf. Sci., 2021, 582: 825.

doi: 10.1016/j.jcis.2020.08.080     URL    
[70]
Ding J, Qiao Z, Zhang Y S, Wei D R, Chen S P, Tang J J, Chen Lu, Wei D, Sun J, Fan H S. Carbohydr. Polym., 2020, 247: 116686.

doi: 10.1016/j.carbpol.2020.116686     URL    
[71]
Xu W Y, Wang W, Chen S M, Zhang R, Wang Y X, Zhang Q, Yuwen L, Yang W L, Wang L H. J. Colloid Interf. Sci., 2021, 586: 601.

doi: 10.1016/j.jcis.2020.10.128     URL    
[72]
Huang X W, Wang X F, Shi C Y, Liu Y, Wei Y Y. J. Polym. Res., 2021, 28(1): 1.

doi: 10.1007/s10965-020-02155-9     URL    
[73]
Wen J, Jia Z Y, Zhang X P, Pan M W, Yuan J F, Zhu L. Mater. Today Commun., 2020, 25: 101569.
[74]
Wu X X, Li J H, Li G, Ling L, Zhang G P, Sun R, Wong C P. J. Appl. Polym. Sci., 2018, 135(31): 46532.

doi: 10.1002/app.46532     URL    
[75]
Zhao L W, Yin Y, Jiang B, Guo Z H, Qu C Y, Huang Y D. J. Colloid Interf. Sci., 2020, 573: 105.

doi: 10.1016/j.jcis.2020.03.125     URL    
[76]
Cai Y B, Zou H W, Zhou S T, Chen Y, Liang M. ACS Appl. Polym. Mater., 2020, 2(9): 3977.

doi: 10.1021/acsapm.0c00638     URL    
[77]
Zheng P W, McCarthy T J. J. Am. Chem. Soc., 2012, 134(4): 2024.

doi: 10.1021/ja2113257     URL    
[78]
Von Szczepanski J, Danner P M, Opris D M. Adv. Sci., 2022, 2202153.
[79]
Li X P, Yu R, Zhao T T, Zhang Y, Yang X, Zhao X J, Huang W. Eur. Polym. J., 2018, 108: 399.

doi: 10.1016/j.eurpolymj.2018.09.021     URL    
[80]
Hou Y, Zhu G D, Cui J, Wu N N, Zhao B T, Wu J, Zhao N. J. Am. Chem. Soc., 2022, 144(1): 436.

doi: 10.1021/jacs.1c10455     URL    
[81]
Burattini S, Colquhoun H M, Greenland B W,. Hayes W. Faraday Discuss., 2009, 143: 251.

pmid: 20334106
[82]
Fawcett A S, Brook M A. Macromolecules, 2014, 47(5): 1656.

doi: 10.1021/ma402361z     URL    
[83]
Lv C, Zhao K, Zheng J P. Macromol. Rapid Commun., 2018, 39(8): 1700686.

doi: 10.1002/marc.201700686     URL    
[84]
Lv C, Wang J K, Li Z X, Zhao K F, Zheng J P. Compos. B Eng., 2019, 177: 107270.

doi: 10.1016/j.compositesb.2019.107270     URL    
[85]
Zhang Y H, Yuan L, Liang G Z, Gu A J. J. Mater. Chem. A, 2018, 6(46): 23425.

doi: 10.1039/C8TA07580H     URL    
[86]
Chen G M, Sun Z Y, Wang Y M, Zheng J Y, Wen S F, Zhang J W, Wang L, Hou J, Lin C G, Yue Z F. Prog. Org. Coat., 2020, 140: 105483.
[87]
Bai L, Zheng J P. Compos. Sci. Technol., 2020, 190: 108062.

doi: 10.1016/j.compscitech.2020.108062     URL    
[88]
Bai L, Yan X X, Feng B W, Zheng J P. Compos. B Eng., 2021, 223: 109123.

doi: 10.1016/j.compositesb.2021.109123     URL    
[89]
Shan Y X, Liang S, Mao X K, Lu J, Liu L L, Huang Y W, Yang J X. Soft. Matter, 2021, 17(17): 4643.

doi: 10.1039/D0SM02175J     URL    
[90]
Yu H T, Feng Y Y, Gao L, Chen C, Zhang Z X, Feng W. Macromolecules, 2020, 53(16): 7161.

doi: 10.1021/acs.macromol.9b02544     URL    
[91]
Guo H S, Han Y, Zhao W Q, Yang J, Zhang L. Nat. Commun., 2020, 11(1): 2037.

doi: 10.1038/s41467-020-15949-8     URL    
[92]
Shi X R, Zhang K Y, Zhao L W, Jiang B, Huang Y D. Ind. Eng. Chem. Res., 2021, 60: 2154.

doi: 10.1021/acs.iecr.0c05238     URL    
[93]
Wang Z, Liu Y T, Zhang D J,. Gao C H, Wu Y M. Compos. B Eng., 2021, 224: 109213.

doi: 10.1016/j.compositesb.2021.109213     URL    
[94]
Zhang D D, Ruan Y B, Zhang B Q, Qiao X, Deng G H. Polymer, 2017, 120: 189.

doi: 10.1016/j.polymer.2017.05.060     URL    
[95]
Xiang H P, Yin J F, Lin G H, Liu X X, Rong M Z, Zhang M Q. Chem. Eng. J., 2019, 358: 878.

doi: 10.1016/j.cej.2018.10.103     URL    
[96]
Otsuka H, Nagano S, Kobashi Y, Maeda T, Takahara A. Chem. Commun., 2010, 46: 1150.

doi: 10.1039/B916128G     URL    
[97]
Zhao D L, Liu S S, Wu Y F, Guan T, Sun N, Ren B Y. Prog. Org. Coat., 2019, 133: 289.
[98]
Ye J, Lin G H, Lin Z Q, Deng H Y, Huang J J, Xiang H P, Rong M Z, Zhang M Q. Macromol. Mater. Eng., 2022, 307(6): 2100874.

doi: 10.1002/mame.202100874     URL    
[99]
Xiang H P, Rong M Z, Zhang M Q. Polymer, 2017, 108: 339.

doi: 10.1016/j.polymer.2016.12.006     URL    
[100]
Huang Y, Yan J, Wang D, Feng S, Zhou C. Polymer, 2021, 13(21): 3729.
[101]
Peng B W, Li H, Li Y T, Lv Z, Wu M, Zhao C X. Chem. Eng. J., 2020, 395: 125079.

doi: 10.1016/j.cej.2020.125079     URL    
[102]
Jia X Y, Mei J F, Lai J C, Li C H, You X Z. Chem. Commun., 2015, 51(43): 8928.

doi: 10.1039/C5CC01956G     URL    
[103]
Zuo Y J, Gou Z M, Zhang C Q, Feng S Y. Macromol. Rapid Commun., 2016, 37 (13): 1052.

doi: 10.1002/marc.201600155     URL    
[104]
Lai J C, Mei J F, Jia X Y, Li C H, You X Z, Bao Z N. Adv. Mater., 2016, 28 (37): 8277.

doi: 10.1002/adma.201602332     URL    
[105]
Miwa Y, Taira K, Kurachi J, Udagawa T, Kutsumizu S. Nat. Commun., 2019, 10: 1828.

doi: 10.1038/s41467-019-09826-2     URL    
[1] 程龙, 于大江, 尤加健, 龙腾, 陈素素, 周传健. 有机硅自修复材料[J]. 化学进展, 2018, 30(12): 1852-1862.
[2] 夏勇, 姚洪涛, 缪智辉, 王芳, 祁争健, 孙宇. 利用点击化学制备有机硅材料及应用[J]. 化学进展, 2015, 27(5): 532-538.
阅读次数
全文


摘要

自修复有机硅材料的制备策略