English
新闻公告
More
化学进展 2013, Vol. 25 Issue (05): 692-697 前一篇   后一篇

• 综述与评论 •

准轮烷/轮烷在药物载体中的应用

刘鹏, 邵学广, 蔡文生*   

  1. 南开大学化学学院 天津 300071
  • 收稿日期:2012-11-01 修回日期:2012-11-01 出版日期:2013-05-24 发布日期:2013-04-15
  • 通讯作者: 蔡文生 E-mail:wscai@nankai.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 20835002, 20873066)和国家重点基础研究发展计划(973)项目(No. 2011CB935904)资助

Application of Pesudorotaxanes/Rotaxanes in Drug Carriers

Liu Peng, Shao Xueguang, Cai Wensheng*   

  1. College of Chemistry, Nankai University, Tianjin 300071, China
  • Received:2012-11-01 Revised:2012-11-01 Online:2013-05-24 Published:2013-04-15

准轮烷/轮烷是超分子化学领域内的一类重要成员,其结构可在外界刺激下发生改变,这一特点使其在分子机器制备方面取得了广泛的应用。近年来,由于其结构的特殊性,在药物载体领域也开始引起人们的关注。本文对近十年来准轮烷/轮烷在药物载体领域内的发展情况进行了综述,重点概述准轮烷修饰的硅纳米粒子和主体-轮烷这两类药物载体的发展历程以及各自的优缺点,最后展望了准轮烷/轮烷在药物载体领域的发展方向。

Pesudorotaxanes/rotaxanes are an important class of supramolecules in the field of supramolecular chemistry. They can adjust their conformations under external stimuli, such as redox process, pH change, light, and solvent, and hence have been widely applied in the fabrication of molecular machines. Recently, researchers realized that these special structural features can be utilized to control drug release and enhance the ability of drugs to enter membranes, making these supramolecules promising candidates for drug carriers. In this paper, the progress of the application of pesudorotaxanes/rotaxanes in drug delivery systems over the past decade has been reviewed. In particular, two kinds of drug carriers, viz. pesudorotaxane-based mechanized silica nanoparticles (MSNP) and host-rotaxanes, are emphasized. MSNP was firstly designed and synthesized by Stoddart and Zink et al. Within MSNP, the assembly and de-assembly processes of the attached pesudorotaxanes endow silica nanoparticles with a new function——controlled drug release. The host-rotaxane carriers were fabricated by Smithrud et al. With the aid of shuttling processes in rotaxanes, host-rotaxanes hold a significant ability to penetrate biomembranes, which can be applied to aid transmembrane drug delivery. The advantages and disadvantages of these two kinds of drug carriers are discussed, either. Finally, the further development of pesudorotaxane/rotaxane-based drug carriers is prospected. Contents
1 Introduction
2 Application of pesudorotaxanes/rotaxanes in drug transport
2.1 Pesudorotaxanes as nanovalves in mechanized silica nanoparticles
2.2 Host-rotaxanes as drug carriers
3 Conclusion and outlook

中图分类号: 

()

[1] Danquah M K, Zhang X A, Mahato R I. Adv. Drug Deliv. Rev., 2011, 63: 623-639
[2] Chen T. Adv. Drug Deliv. Rev., 2010, 62: 1257-1264
[3] Torchilin V P. Adv. Drug Deliv. Rev., 2008, 60: 548-558
[4] Uhrich K E, Cannizzaro S M, Langer R S, Shakesheff K M. Chem. Rev., 1999, 99: 3181-3198
[5] Medina S H, El-Sayed M E H. Chem. Rev., 2009, 109: 3141-3157
[6] Song J, Zhou J, Duan H. J. Am. Chem. Soc., 2012, 134: 13458-13469
[7] Lee J E, Lee N, Kim T, Kim J, Hyeon T. Acc. Chem. Res., 2011, 44: 893-902
[8] Kievit F M, Zhang M. Acc. Chem. Res., 2011, 44: 853-862
[9] Gomes-da-Silva L C, Fonseca N A, Moura V, Pedroso de Lima M C, Simões S, Moreira J N. Acc. Chem. Res., 2012, 45: 1163-1171
[10] Hoyer J, Neundorf I. Acc. Chem. Res., 2012, 45: 1048-1056
[11] Shieh Y A, Yang S J, Wei M F, Shieh M J. ACS Nano, 2010, 4: 1433-1442
[12] Uekama K, Hirayama F, Irie T. Chem. Rev., 1998, 98: 2045-2076
[13] Raymo F M, Stoddart J F. Chem. Rev., 1999, 99: 1643-1664
[14] Fahrenbach A C, Bruns C J, Cao D, Stoddart J F. Acc. Chem. Res., 2012, 45: 1581-1592
[15] Harada A. Acc. Chem. Res., 2001, 34: 456-464
[16] Wenz G, Han B H, M黮ler A. Chem. Rev., 2006, 106: 782-817
[17] Guo X Q, Song L X, Dang Z, Du F Y. Bull. Chem. Soc. Jpn., 2009, 82: 1209-1213
[18] Wang Y H, Zhang H M, Liu L, Liang Z X, Guo Q X, Tung C H, Inoue Y, Liu Y C. J. Org. Chem., 2002, 67: 2429-2434
[19] Harada A, Hashidzume A, Yamaguchi H, Takashima Y. Chem. Rev., 2009, 109: 5974-6023
[20] Lee J W, Samal S, Selvapalam N, Kim H J, Kim K. Acc. Chem. Res., 2003, 36: 621-630
[21] Rowan A E, Elemans J A A W, Nolte R J M. Acc. Chem. Res., 1999, 32: 995-1006
[22] Belowich M E, Valente C, Smaldone R A, Friedman D C, Thiel J, Cronin L, Stoddart J F. J. Am. Chem. Soc., 2012, 134: 5243-5261
[23] Zhang M, Xu D, Yan X, Chen J, Dong S, Zheng B, Huang F. Angew. Chem. Int. Ed., 2012. 51: 7011-7015
[24] Xue M, Yang Y, Chi X, Zhang Z, Huang F. Acc. Chem. Res., 2012, 45: 1294-1308
[25] Hu X B, Chen L, Si W, Yu Y, Hou J L. Chem. Commun., 2011, 4694-4696
[26] Yu G, Han C, Zhang Z, Chen J, Yan X, Zheng B, Liu S, Huang F. J. Am. Chem. Soc., 2012, 134: 8711-8717
[27] Bodis P, Panman M R, Bakker B H, Mateo-Alonso A, Prato M, Buma W J, Brouwer A M, Kay E R, Leigh D A, Woutersen S. Acc. Chem. Res., 2009, 42: 1462-1469
[28] Lehn J M. Supramolecular Chemistry: Concepts and Perspectives. New York: Wiley-VCH, 1995. 1-9
[29] Balzani V, G髆ez-L髉ez M, Stoddart J F. Acc. Chem. Res., 1998, 31: 405-414
[30] Kawaguchi Y, Harada A. Org. Lett., 2000, 2: 1353-1356
[31] Ye T, Kumar A S, Saha S, Takami T, Huang T J, Stoddart J F, Weiss P S. ACS Nano, 2010, 4: 3697-3701
[32] Balzani V, Clemente-Le髇 M, Credi A, Ferrer B, Venturi M, Flood A H, Stoddart J F. Proc. Natl. Acad. Sci. U. S. A., 2006, 103: 1178-1183
[33] Brouwer A M, Frochot C, Gatti F G, Leigh D A, Mottier L c, Paolucci F, Roffia S, Wurpel G W H. Science, 2001, 291: 2124-2128
[34] Chipot C, Pohorille A. (Eds.) Free Energy Calculations. Theory and Applications in Chemistry and Biology. Berlin: Springer Verlag, 2007
[35] Sprik M, Ciccotti G. J. Chem. Phys., 1998, 109: 7737-7744
[36] Carter E A, Ciccotti G, Hynes J T, Kapral R. Chem. Phys. Lett., 1989, 156: 472-477
[37] Still W C, Tempczyk A, Hawley R C, Hendrickson T. J. Am. Chem. Soc., 1990, 112: 6127-6129
[38] Darve E, Rodriguez-G髆ez D, Pohorille A. J. Chem. Phys., 2008, 128: art. no. 144120
[39] Rodriguez-Gomez D, Darve E, Pohorille A. J. Chem. Phys., 2004, 120: 3563-3578
[40] Chipot C, H閚in J. J. Chem. Phys., 2005, 123: art. no. 244906
[41] H閚in J, Chipot C. J. Chem. Phys., 2004, 121: 2904-2914
[42] Kim H, Goddard W A, Jang S S, Dichtel W R, Heath J R, Stoddart J F. J. Phys. Chem. A, 2009, 113: 2136-2143
[43] Raiteri P, Bussi G, Cucinotta C S, Credi A, Stoddart J F, Parrinello M. Angew. Chem. Int. Ed., 2008, 47: 3536-3539
[44] Zhang Q, Tu Y, Tian H, Zhao Y L, Stoddart J F, Ågren H. J. Phys. Chem. B, 2010, 114: 6561-6566
[45] Liu P, Chipot C, Shao X G, Cai W S. J. Phys. Chem. C, 2012, 116: 4471-4476
[46] Liu P, Cai W S, Chipot C, Shao X G. J. Phys. Chem. Lett., 2010, 1: 1776-1780
[47] Deng W Q, Muller R P, Goddard W A. J. Am. Chem. Soc., 2004, 126: 13562-13563
[48] Dvornikovs V, House B E, Kaetzel M, Dedman J R, Smithrud D B. J. Am. Chem. Soc., 2003, 125: 8290-8301
[49] Carlone A, Goldup S M, Lebrasseur N, Leigh D A, Wilson A. J. Am. Chem. Soc., 2012, 134: 8321-8323
[50] Serreli V, Lee C F, Kay E R, Leigh D A. Nature, 2007, 445: 523-527
[51] Kay E R, Leigh D A, Zerbetto F. Angew. Chem. Int. Ed., 2007, 46: 72-191
[52] Zhao Y L, Aprahamian I, Trabolsi A, Erina N, Stoddart J F. J. Am. Chem. Soc., 2008, 130: 6348-6350
[53] Luo Y, Collier C P, Jeppesen J O, Nielsen K A, DeIonno E, Ho G, Perkins J, Tseng H R, Yamamoto T, Stoddart J F, Heath J R. ChemPhysChem, 2002, 3: 519-525
[54] Pease A R, Jeppesen J O, Stoddart J F, Luo Y, Collier C P, Heath J R. Acc. Chem. Res., 2001, 34: 433-444
[55] Hernandez R, Tseng H R, Wong J W, Stoddart J F, Zink J I. J. Am. Chem. Soc., 2004, 126: 3370-3371
[56] Guo D S, Wang K, Wang Y X, Liu Y. J. Am. Chem. Soc., 2012, 134: 10244-10250
[57] Torney F, Trewyn B G, Lin V S Y, Wang K. Nat. Nano., 2007, 2: 295-300
[58] Trewyn B G, Slowing I I, Giri S, Chen H T, Lin V S Y. Acc. Chem. Res. 2007, 40: 846-853
[59] Angelos S, Johansson E, Stoddart J F, Zink J I. Adv. Funct. Mater., 2007, 17: 2261-2271
[60] Yang Y W. MedChemComm, 2011, 2: 1033-1049
[61] Nygaard S, Hansen S W, Huffman J C, Jensen F, Flood A H, Jeppesen J O. J. Am. Chem. Soc, 2007, 129: 7354-7363
[62] Zhu Z, Fahrenbach A C, Li H, Barnes J C, Liu Z, Dyar S M, Zhang H, Lei J, Carmieli R, Sarjeant A A, Stern C L, Wasielewski M R, Stoddart J F. J. Am. Chem. Soc, 2012, 134: 11709-11720
[63] Thomas C R, Ferris D P, Lee J H, Choi E, Cho M H, Kim E S, Stoddart J F, Shin J S, Cheon J, Zink J I. J. Am. Chem. Soc., 2010, 132: 10623-10625
[64] Ferris D P, Zhao Y L, Khashab N M, Khatib H A, Stoddart J F, Zink J I. J. Am. Chem. Soc., 2009, 131: 1686-1688
[65] Sun Y L, Yang B J, Zhang S X A, Yang Y W. Chem. Eur. J., 2012, 18: 9212-9216
[66] Marquez C, Nau W M. Angew. Chem. Int. Ed., 2001, 40: 3155-3160
[67] M醨quez C, Hudgins R R, Nau W M. J. Am. Chem. Soc., 2004, 126: 5806-5816
[68] Ling X, Samuel E L, Patchell D L, Masson E. Org. Lett., 2010, 12: 2730-2733
[69] Angelos S, Khashab N M, Yang Y W, Trabolsi A, Khatib H A, Stoddart J F, Zink J I. J. Am. Chem. Soc., 2009, 131: 12912-12914
[70] Nguyen T D, Leung K C F, Liong M, Pentecost C D, Stoddart J F, Zink J I. Org. Lett., 2006, 8: 3363-3366
[71] Patel K, Angelos S, Dichtel W R, Coskun A, Yang Y W, Zink J I, Stoddart J F. J. Am. Chem. Soc., 2008, 130: 2382-2383
[72] Meng H, Xue M, Xia T, Zhao Y L, Tamanoi F, Stoddart J F, Zink J I, Nel A E. J. Am. Chem. Soc., 2010, 132: 12690-12697
[73] Zhao Y L, Li Z, Kabehie S, Botros Y Y, Stoddart J F, Zink J I. J. Am. Chem. Soc., 2010, 132: 13016-13025
[74] Vassal G, Koscielny S, Challine D, Valteau-Couanet D, Boland I, Deroussent A, Lemerle J, Gouyette A, Hartmann O. Cancer Chemoth. Pharm., 1995, 37: 247-253
[75] Menuel S, Joly J P, Courcot B, Elys閑 J, Ghermani N E, Marsura A. Tetrahedron, 2007, 63: 1706-1714
[76] Porwanski S, Dumarcay-Charbonnier F, Menuel S, Joly J P, Bulach V, Marsura A. Tetrahedron, 2009, 65: 6196-6203
[77] Zehnder D W, Smithrud D B. Org. Lett., 2001, 3: 2485-2487
[78] Smukste I, House B E, Smithrud D B. J. Org. Chem., 2003, 68: 2559-2571
[79] Wang X, Bao X, McFarland-Mancini M, Isaacsohn I, Drew A F, Smithrud D B. J. Am. Chem. Soc., 2007, 129: 7284-7293
[80] Bao X, Isaacsohn I, Drew A F, Smithrud D B. J. Am. Chem. Soc., 2006, 128: 12229-12238
[81] Wang X, Smithrud D B. Bioorg. Med. Chem. Lett., 2011, 21: 6880-6883
[82] Zhu J, McFarland-Mancini M, Drew A F, Smithrud D B. Bioorg. Med. Chem. Lett., 2009, 19: 520-523

[1] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[2] 陈晓峰, 王开元, 梁芳铭, 姜睿祺, 孙进. 外泌体递药系统及其在肿瘤治疗中的应用[J]. 化学进展, 2022, 34(4): 773-786.
[3] 黄祺, 邢震宇. 锂硒电池研究进展[J]. 化学进展, 2022, 34(11): 2517-2539.
[4] 卢赟, 史宏娟, 苏岳锋, 赵双义, 陈来, 吴锋. 元素掺杂碳基材料在锂硫电池中的应用[J]. 化学进展, 2021, 33(9): 1598-1613.
[5] 刘新叶, 梁智超, 王山星, 邓远富, 陈国华. 碳基材料修饰聚烯烃隔膜提高锂硫电池性能研究[J]. 化学进展, 2021, 33(9): 1665-1678.
[6] 郭林莉, 张新, 肖敏, 王拴紧, 韩东梅, 孟跃中. 二维材料修饰隔膜抑制锂硫电池穿梭效应策略[J]. 化学进展, 2021, 33(7): 1212-1220.
[7] 孙皓, 宋程威, 庞越鹏, 郑时有. 锂硫电池隔膜功能化设计[J]. 化学进展, 2020, 32(9): 1402-1411.
[8] 张芬铭, 田语舒, 郑绩, 陈堃, 冯岸超, 张立群. 基于PHPMA的生物医用功能高分子[J]. 化学进展, 2020, 32(2/3): 331-343.
[9] 樊潮江, 燕映霖, 陈利萍, 陈世煜, 蔺佳明, 杨蓉. 过渡金属硫化物改性锂硫电池正极材料[J]. 化学进展, 2019, 31(8): 1166-1176.
[10] 英启炜, 廖建国, 吴民行, 翟智皓, 刘欣茹. 球形生物活性玻璃作为运输载体的研究[J]. 化学进展, 2019, 31(5): 773-782.
[11] 薛敏, 范芳芳, 杨勇, 陈传峰. 柱芳烃机械互锁结构的制备及功能化[J]. 化学进展, 2019, 31(4): 491-504.
[12] 杨凯, 章胜男, 韩东梅, 肖敏, 王拴紧*, 孟跃中*. 多功能锂硫电池隔膜[J]. 化学进展, 2018, 30(12): 1942-1959.
[13] 何天稀, 梁琼麟, 王九, 罗国安. 脂质体类药物载体的微流控制备[J]. 化学进展, 2018, 30(11): 1734-1748.
[14] 韩冬琳, 亓洪昭, 赵瑾, 龙丽霞, 任玉, 原续波. 增强纳米药物载体肿瘤内渗透分布的研究进展[J]. 化学进展, 2016, 28(9): 1397-1405.
[15] 付开乔, 张光彦, 蒋序林. 聚天冬酰胺衍生物药物/基因载体的合成和应用[J]. 化学进展, 2016, 28(8): 1196-1206.
阅读次数
全文


摘要

准轮烷/轮烷在药物载体中的应用