English
新闻公告
More
化学进展 前一篇   后一篇

• 综述与评论 •

锂空气电池研究述评

张栋1, 张存中*1,2, 穆道斌1,2, 吴伯荣1,2, 吴锋 1,2   

  1. 1. 北京理工大学化工与环境学院 环境科学工程北京市重点实验室 北京 100081;
    2. 国家高技术绿色材料发展中心 北京 100081
  • 收稿日期:2012-05-01 修回日期:2012-06-01 出版日期:2012-12-24 发布日期:2012-12-11
  • 通讯作者: 张存中 E-mail:czzhangchem@bit.edu.cn
  • 基金资助:

    国家重点基础研究发展计划(973)项目(No. 2009CB220100)、厦门大学固体表面物理化学国家重点实验室开放基金(2010-18)、动力电池及化学能源材料北京市高等学校工程研究中心开放基金资助

Review on Lithium-Air Batteries

Zhang Dong1, Zhang Cunzhong*1,2, Mu Daobin1,2, Wu Borong1,2, Wu Feng 1,2   

  1. 1. Beijing Key Laboratory of Environmental Science and Engineering, School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing 100081,China;
    2. National Development Center of High Technology Green Materials, Beijing 100081, China
  • Received:2012-05-01 Revised:2012-06-01 Online:2012-12-24 Published:2012-12-11
由于锂空气电池具有很高的理论能量密度因而引起了广泛关注和研究。本文较为全面地论述了各种电解质体系中的锂空气电池的进展,包括:有机体系、水体系、离子液体体系、有机-水双电解质体系和全固态体系的锂空气电池;详细阐述和归纳了它们的工作原理和最新研究现状。对最新提出的锂-空气-超级电容电池的原理和特点进行了较详细的论述。结合氧气在有机电解质中的电化学还原行为指出单一有机电解质锂空气电池存在的问题以及可能的解决办法;同时展示了这类电池中空气电极催化剂的发展现状。结合双电解质锂空气电池、固态电解质锂空气电池、锂-空气-超级电容电池的结构阐述了它们各自的优缺点。本文还展示了一些可望用于单一有机电解质锂空电池、有机-水双电解质体系锂空电池的新型碳材料。最后对锂空气电池的研究发展进行了总结与展望,提出新型电解液、催化剂以及改进锂空气电池构造将会成为今后的发展趋势。
Lithium-air battery has been a focus of study for the past two decades extensively because of its excellent properties of energy and power densities. The performance, operation mechanism and state-of-the-art of Li-air batteries, operated in all of electrolytes, such as non-aqueous electrolytes, aqueous electrolytes, ionic liquids electrolytes, aqueous-nonaqueous dual-electrolytes and all solid electrolytes, are collected and discussed in detail in this paper. In special, the performance, principle and potential practical possibility of lithium-air-super-capacitor battery, which was just mentioned last year, is also reviewed in detail. Combined with the electrochemical behavior and research results of oxygen reduction reaction on different electrodes in different non-aqueous electrolytes, the defect and problem of nonaqueous electrolyte lithium-air battery is also discussed. In this paper, the relationship between reversibility of ORR in organic electrolytes and rechargeable property of nonaqueous electrolyte lithium-air battery is discussed. In addition, some suggestions are exhibited based on relative research results. According to the device structure, electrochemical reaction of air electrode in different electrolytes and mass transfer behavior, the performances of organic-water dual-electrolyte lithium-air battery, all solid state electrolyte lithium-air battery and lithium-air-super-capacitor battery are compared and discussed. Moreover, some promising carbon-class electro-catalysts, such as graphene nanosheets(GNSs), are also exhibited for the development of Li-air batteries. At last, the performance and development of lithium-air batteries are summarized and some meaningful development directions, such as exploration of new electrolytes, electro-catalysts and design of novel structures, are suggested for the next generation of Li-air batteries. Contents
1 Introduction
2 Nonaqueous electrolyte for lithium-air battery
2.1 Air electrode
2.2 Effect of ambient conditions
3 Water electrolyte for lithium-air battery
4 Ionic liquid electrolyte for lithium-air battery
5 Organic-water dual-electrolyte for lithium-air battery
6 All solid state electrolyte for lithium-air battery
7 Lithium-air-super-capacitor battery
8 Conclusion

中图分类号: 

()
[1] Richter B, Goldston D, Crabtree G, Glicksman L, Goldstein D, Greene D, Kammen D, Levine M, Lubell M, Savitz M, Sperling D, Schlachter F, Scofield J, Dawson J. Reviews of Modern Physics, 2008, 80(4): S1-S109
[2] MacKay D J C. Sustainable Energy--without the Hot Air. Cambridge: UIT Cambridge, Ltd., 2009. 124-125
[3] Chen J, Cheng F Y. Accounts of Chemical Research, 2009, 42(6): 713-723
[4] Li W Y, Li C S, Zhou C Y, Ma H, Chen J. Angew. Chem., 2006, 118: 6155-6158
[5] Yang S H, Knickle H. J. Power Sources, 2002, 112: 162-173
[6] Zhang G Q, Zhang X G, Li H L. J. Solid State Electrochem., 2006, 10: 995-1001
[7] Ikeda H, Furukawa N, Ide M. Abstracts of Papers of the American Chemical Society, 1979. Apr: 70
[8] Linden D. Handbook of batteries(3rd edition). New York: McGraw-Hill, 2003.13.2
[9] 李国欣(Li G X). 新型化学电源技术概论(Introduction of New Chemical Power Technology). 上海: 上海科学技术出版社(Shanghai: Shanghai Scientific Technology Press), 2007. 400
[10] 査全性(Zha Q X). 化学电源选论(Introduction of Chemical Power Sources). 武汉: 武汉大学出版社(Wuhan: Wuhan University Press), 2005.65
[11] 陈军(Chen J), 陶占良(Tao Z L), 苟兴龙(Gou X L). 化学电源--原理、技术与应用(Chemical Power Sources--Principle, Technology and Application). 北京: 化学工业出版社(Beijing: Chemical Industry Press), 2006. 247
[12] Abraham K M, Jiang Z. J. Electrochem. Soc., 1996, 143(1): 1-5
[13] Girishkumar G, McCloskey B, Luntz A C, Swanson S, Wilcke W. J. Phys. Chem. Lett., 2010, 1: 2193-2203
[14] Adams J, Karulkar M. J. Power Sources, 2012, 199: 247-255
[15] Kinoshita K. Metal/Air Batteries. New York: John Wiley & Sons, Inc., 1992.259-306
[16] Tarascon J M, Gozdz A S, Schmutz C, Shokoohi F, Warren P C. Solid State Ionics, 1996, 86/88: 49-54
[17] Kuboki T, Okuyama T, Ohsaki T, Takami N. J. Power Sources, 2005, 146: 766-769
[18] Wang D Y, Xiao J, Xu W, Zhang J G. J. Electrochem. Soc., 2010, 157(7): A760-A764
[19] Lu Y C, Gasteiger H A, Parent M C, Chiloyan V, Yang S H. Electrochem. Solid-State Lett., 2010, 13(6): A69-A72
[20] Christensen J, Albertus P, Sanchez-Carrera R S, Lohmann T, Kozinsky B, Liedtke R, Ahmed J, Kojic A. J. Electrochem. Soc., 2012, 159 (2): R1-R30
[21] Freunberger S A, Chen Y H, Peng Z Q, Griffin J M, Hardwick L J, Bardé F, Novák P, Bruce P G. J. Am. Chem. Soc., 2011, 133: 8040-8047
[22] Xu W, Xu K, Viswanathan V V, Towne S A, Hardy J S, Xiao J, Nie Z M, Hu D H, Wang D Y, Zhang J G. J. Power Sources, 2011, 196(22): 9631-9639
[23] Laoire C O, Mukerjee S, Abraham K M, Plichta E J, Hendrickson M A. J. Phys. Chem. C, 2009, 113: 20127-20134
[24] Sawyer D T, Seo E T. Inorg. Chem., 1977, 16(2): 499 -501
[25] Aurbach D, Daroux M, Faguy P, Yeager E. J. Electroanal. Chem., 1991, 297(1): 225-244
[26] Peng Z Q, Freunberger S A, Hardwick L J, Chen Y H, Giordani V, Barde F, Novak P, Graham D, Tarascon J M, Bruce P G. Angew. Chem. Int. Ed., 2011, 50(28): 6351-6355
[27] Laoire C O, Mukerjee S, Abraham K M. J. Phys. Chem. C, 2010, 114: 9178-9186
[28] Freunberger S A, Chen Y H, Drewett N E, Hardwick L J, Bardé F, Bruce P G. Angew. Chem. Int. Ed., 2011, 50: 8609-8613
[29] McCloskey B D, Bethune D S, Shelby R M, Girishkumar G. Luntz A C. J. Phys. Chem. Lett., 2011, 2: 1161-1166
[30] Veith G M, Dudney N J, Howe J, Nanda J. J. Phys. Chem. C, 2011, 115: 14325-14333
[31] Mizuno F, Nakanishi S, Kotani Y, Yokoishi S, Iba H. Electrochem., 2010, 78(5): 403-405
[32] Xu W, Viswanathan V V, Wang D Y, Towne S A, Xiao J, Nie Z M, Hu D H, Zhang J G. J. Power Sources, 2011, 196: 3894-3899
[33] Laino T, Curioni A. Chem. Eur. J., 2012, 18: 3510-3520
[34] McCloskey B D, Schefler R, Speidel A, Bethune D S, Shelby R M, Luntz A C. J. Am. Chem. Soc., 2011, 133(45): 18038-18041
[35] McCloskey B D, Speidel A, Scheffler R, Miller D C, Viswanathan V, Hummelshøj J S, Nørskov J K, Luntz A C. J. Phys. Chem. Lett., 2012, 3: 997-1001
[36] Meini S, Piana M, Tsiouvaras N, Garsuch A, Gasteiger H A. Electrochem. Solid-State Lett., 2012, 15(4): A45-A48
[37] Singh P S, Evans D H. J. Phys. Chem. B, 2006, 110: 637-644
[38] Zhang C Z, Fan F R F, Bard A J. J. Am. Chem. Soc., 2009, 131: 177-181
[39] Zhang Z C, Lu J, Assary R S, Du P, Wang H H, Sun Y K, Qin Y, Lau K L, Greeley J, Redfern P C, Iddir H, Curtiss L A, Amine K. J. Phys. Chem. C, 2011, 115(51): 25535-25542
[40] Chen Y H, Freunberger S A, Peng Z Q, Barde F, Bruce P G. J. Am. Chem. Soc., 2012, 134: 7952-7957
[41] Sun B, Wang B, Su D W, Xiao L D, Ahn H, Wang G X. Carbon, 2012, 50: 727-733
[42] Débart A, Paterson A J, Bao J L, Bruce P G. Angew. Chem. Int. Ed., 2008, 47: 4521-4524
[43] Débart A, Bao J L, Armstrong G, Bruce P G. J. Power Sources, 2007, 174: 1177-1182
[44] Yoo E, Zhou H S. ACS Nano, 2011, 5(4): 3020-3026
[45] Lu Y C, Gasteiger H A, Yang S H. J. Am. Chem. Soc., 2011, 133 (47): 19048-19051
[46] Lu Y C, Xu Z C, Gasteiger H A, Chen S, Hamad-Schifferli K, Yang S H. J. Am. Chem. Soc., 2010, 132: 12170-12171
[47] Cheng H, Scott K. J. Power Sources, 2010, 195: 1370-1374
[48] Ogasawara T, Débart A, Holzapfel M, Novák P, Bruce P G. J. Am. Chem. Soc., 2006, 128: 1390-1393
[49] Zhang G Q, Zheng J P, Liang R, Zhang C, Wang B, Au M, Hendrickson M A, Plichta E J. J. Electrochem. Soc., 2011, 158 (7): A822-A827
[50] Zhang G Q, Hendrickson M, Plichta E J, Au M, Zheng J P. J. Electrochem. Soc., 2012, 159 (3): A310-A314
[51] Kim K S, Park Y J. Nanoscale Res. Lett., 2012, 7: 1-8
[52] Zhang S S, Ren X M, Read J. Electrochim. Acta, 2011, 56: 4544-4548
[53] 高军(Gao J), 武巍(Wu W), 田艳艳(Tian Y Y), 杨勇(Yang Y). 电化学(J. Electrochem. ), 2012, 18(1): 14-17
[54] Wang H L, Yang Y, Liang Y Y, Zheng G Y, Li Y G, Cui Y, Dai H J. Energy Environ. Sci., 2012, 5: 7931-7935
[55] Zhang J G, Wang D Y, Xu W, Xiao J, Williford R E. J. Power Sources, 2010, 195: 4332-4337
[56] Crowther O, Keeny D, Moureau D M, Meyer B, Salomon M. J. Power Sources, 2012, 202: 347-351
[57] Li L F, Xie B, Lee H S, Li H, Yang X Q, McBreen J, Huang X J. J. Power Sources, 2009, 189: 539-542
[58] Li L F, Lee H S, Li H, Yang X Q, Huang X J. Electrochem. Commun., 2009, 11: 2296-2299
[59] Xie B, Lee H S, Li H, Yang X Q, McBreen J, Chen L Q. Electrochem. Commun., 2008, 10: 1195-1197
[60] Xu W, Xiao J, Wang D Y, Zhang J, Zhang J G. J. Electrochem. Soc., 2010, 157(2): A219-A224
[61] Ren X M, Zhang S S, Tran D T, Read J. J. Mater. Chem., 2011, 21(27): 10118-10125
[62] Shao Y Y, Park S, Xiao J, Zhang J G, Wang Y, Liu J. ACS Catal., 2012, 2: 844-857
[63] Visco S J, Nimon E, Katz B, Jonghe L C D, Chu M Y. Abstract 53, International Meeting on Lithium Batteries Abstracts. Nara, Japan, 2004.12
[64] Visco S J, Nimon E, Katz B, Jonghe L C D, Chu M Y. Abstract 0389, The Electrochemical Society Meeting Abstracts. Cancun, Mexico, 2006. 2
[65] Zhang T, Imanishi N, Hasegawa S, Hirano A, Xie J, Takeda Y, Yamamoto O, Sammes N. J. Electrochem. Soc., 2008, 155(12): A965-A969
[66] Zhang T, Imanishi N, Hasegawa S, Hirano A, Xie J, Takeda Y, Yamamoto O, Sammes N. Electrochem. Solid-State Lett., 2009, 12 (7): A132-A135
[67] Hasegawa S, Imanishi N, Zhang T, Xie J, Hirano A, Takeda Y, Yamamoto O. J. Power Sources, 2009, 189: 371-377
[68] Zhang T, Imanishi N, Shimonishi Y, Hirano A, Takeda Y, Yamamoto O, Sammes N. Chem. Commun., 2010, 46: 1661-1663
[69] Shimonishi Y, Zhang T, Imanishi N, Im D, Lee D J, Hirano A, Takeda Y, Yamamoto O, Sammes N. J. Power Sources, 2011, 196: 5128-5132
[70] Allen C J, Mukerjee S, Plichta E J, Hendrickson M A, Abraham K M. J. Phys. Chem. Lett., 2011, 2: 2420-2424
[71] Wang Y G, Zhou H S. J. Power Sources, 2010, 195: 358-361
[72] Gierszewski P J, Finn P A, Kirk D W. Fusion Engineering and Design, 1990, 13(1): 59-71
[73] Zhang T, Imanishi N, Shimonishi Y, Hirano A, Xi J, Takeda Y, Yamamoto O, Sammesb N. J. Electrochem. Soc., 2010, 157(2): A214-A218
[74] He P, Wang Y G, Zhou H S. Electrochem. Commun., 2010, 12: 1686-1689
[75] He P, Wang Y G, Zhou H S. J. Power Sources, 2011, 196: 5611-5616
[76] Jiang D E, Sumpter B G, Dai S. J. Chem. Phys. 2007, 126: art. no. 134701
[77] Yoo E, Nakamura J, Zhou H S. Energy Environ. Sci., 2012, 5: 6928-6932
[78] Deng D H, Pan X L, Yu L, Cui Y, Jiang Y P, Qi J, Li W X, Fu Q, Ma X C, Xue Q K, Sun G Q, Bao X H. Chem. Mater., 2011, 23: 1188-1193
[79] He P, Wang Y G, Zhou H S. Chem. Commun., 2011, 47: 10701-10703
[80] Li L J, Zhao X S, Manthiram A. Electrochem. Commun., 2012, 14: 78-81
[81] Andrei P, Zheng J P, Hendrickson M, Plichta E J. J. Electrochem. Soc., 2012, 159(6): A770-A780
[82] Kumar B, Kumar J, Leese R, Fellner J P, Rodrigues S J, Abraham K M. J. Electrochem. Soc., 2010, 157(1): A50-A54
[83] Kumar B, Kumar J. J. Electrochem. Soc., 2010, 157(5): A611-A616
[84] Gong K P, Du F, Xia Z H, Durstock M, Dai L M. Science, 2009, 323: 760-764
[85] Tang Y F, Allen B L, Kauffman D R, Star A. J. Am. Chem. Soc., 2009, 131: 13200-13201
[86] Kichambare P, Rodrigues S, Kumar J. ACS Appl. Mater. Interfaces, 2012, 4: 49-52
[87] Wang Y G, He P, Zhou H S. Energy Environ. Sci., 2011, 4: 4994-4999
[88] Wang Y G, Zhou H S. Energy Environ. Sci., 2011, 4: 1704-1707
[1] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[2] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[3] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[4] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[5] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[6] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.
[7] 杨启悦, 吴巧妹, 邱佳容, 曾宪海, 唐兴, 张良清. 生物基平台化合物催化转化制备糠醇[J]. 化学进展, 2022, 34(8): 1748-1759.
[8] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[9] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[10] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[11] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[12] 王许敏, 李书萍, 何仁杰, 余创, 谢佳, 程时杰. 准固相转化机制硫正极[J]. 化学进展, 2022, 34(4): 909-925.
[13] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[14] 沈树进, 韩成, 王兵, 王应德. 过渡金属单原子电催化剂还原CO2制CO[J]. 化学进展, 2022, 34(3): 533-546.
[15] 楚弘宇, 王天予, 王崇臣. MOFs基材料高级氧化除菌[J]. 化学进展, 2022, 34(12): 2700-2714.
阅读次数
全文


摘要

锂空气电池研究述评