English
新闻公告
More
化学进展 前一篇   后一篇

• 综述与评论 •

非水系二次锂-氧电池正极

李鹏, 孙彦平*   

  1. 太原理工大学洁净化工研究所 太原 030024
  • 收稿日期:2012-01-01 修回日期:2012-07-01 出版日期:2012-12-24 发布日期:2012-12-11
  • 通讯作者: 孙彦平 E-mail:ypsun@tyut.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.20776091)资助

Positive Electrodes of Non-Aqueous Rechargeable Lithium-Oxygen Batteries

Li Peng, Sun Yanping*   

  1. Institute of Clean Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
  • Received:2012-01-01 Revised:2012-07-01 Online:2012-12-24 Published:2012-12-11
非水系二次锂-氧电池(NRLOB)在当前所研发的二次电池中理论能量密度最高,但存在循环性能差,充、放电电流密度低等显著问题;这些问题主要同其氧正极上的电化学反应相关,关键在于过氧化锂Li2O2可逆生成、分解反应能否在较高的速率下连续地进行。本文综述了近年来NRLOB正极电化学反应机理、正极碳材料、催化剂和电极结构、电解液分解导致电极副反应等方面的研究现状;归纳了今后需要进一步研究的主要问题。
Non-aqueous rechargeable lithium-oxygen battery(NRLOB) possesses the highest theoretical energy density among all secondary battery systems. However, there are some tough problems for the NRLOB development,which include poor cyclability and low charge-discharge current densities of the battery. These problems are chiefly relating to the electrochemical reactions on the surface of the porous oxygen positive electrode. The key issue should be to ensure reversible decomposition and formation of Li2O2 to proceed sustainedly at higher reaction rates. In this article, the fundamental understanding of oxygen electrochemical mechanisms in non-aqueous electrolytes, research status of carbon materials and catalysts of the positive electrode, electrode structures and side reactions arising from electrolyte degradation are reviewed. The main issues for further research are summed up. Contents
1 Introduction
2 Electrochemical reactions of oxygen positive electrode
2.1 Oxygen reduction reaction
2.2 Oxygen evolution reaction
3 Oxygen positive electrode materials and structure
3.1 Carbon materials
3.2 Catalysts for oxygen reduction/evolution
3.3 Oxygen electrode structure
4 Electrode side reactions
5 Conclusions and perspectives

中图分类号: 

()
[1] Armand M, Tarascon J M. Nature, 2008, 451: 652-657
[2] Tarascon J M. Philos. T. R. Soc. A, 2010, 368: 3227-3241
[3] Wang Y, He P, Zhou H. Energ. Environmen. Sci., 2011, 4: 4994-4999
[4] Lee J S, Kim S T, Cao R, Choi N S, Liu M, Lee K T, Cho J. Adv. Energ. Mater., 2011, 1: 34-50
[5] Girishkumar G, McCloskey B, Luntz A, Swanson S, Wilcke W. J. Phys. Chem. Lett., 2010, 1: 2193-2203
[6] Blurton K F, Sammells A F. J. Power Sources, 1979, 4: 263-279
[7] Wang Y, Zhou H. J. Power Sources, 2010, 195: 358-361
[8] Zhang T, Imanishi N, Takeda Y, Yamamoto O. Chem. Lett., 2011, 40: 668-673
[9] Visco S J, Katz B D, Nimon Y S, De Jonghe L C. US 7282295, 2007
[10] Hasegawa S, Imanishi N, Zhang T, Xie J, Hirano A, Takeda Y, Yamamoto O. J. Power Sources, 2009, 189: 371-377
[11] Imanishi N, Hasegawa S, Zhang T, Hirano A, Takeda Y, Yamamoto O. J. Power Sources, 2008, 185: 1392-1397
[12] Zhang T, Imanishi N, Hasegawa S, Hirano A, Xie J, Takeda Y, Yamamoto O, Sammes N. J. Electrochem. Soc., 2008, 155: A965-A969
[13] Shimonishi Y, Zhang T, Johnson P, Imanishi N, Hirano A, Takeda Y, Yamamoto O, Sammes N. J. Power Sources, 2010, 195: 6187-6191
[14] Shimonishi Y, Zhang T, Imanishi N, Im D, Lee D J, Hirano A, Takeda Y, Yamamoto O, Sammes N. J. Power Sources, 2011, 196: 5128-5132
[15] Zhang T, Imanishi N, Shimonishi Y, Hirano A, Takeda Y, Yamamoto O, Sammes N. Chem. Commun., 2010, 46: 1661-1663
[16] Li L, Zhao X, Manthiram A. Electrochem. Commun., 2012, 14: 78-81
[17] Kowalczk I, Read J, Salomon M. Pure Appl. Chem., 2007, 79: 851-860
[18] Zheng J P, Andrei P, Hendrickson M, Plichta E J. J. Electrochem. Soc., 2011, 158: A43-A46
[19] Christensen J, Albertus P, Sanchez-Carrera R S, Lohmann T, Kozinsky B, Liedtke R, Ahmed J, Kojic A. J. Electrochem. Soc., 2012, 159: R1-R30
[20] Bruce P G, Freunberger S A, Hardwick L J, Tarascon J M. Nature Materials, 2011, 11: 19-29
[21] 程琥(Cheng H), 李涛(Li T), 杨勇(Yang Y). 化学进展(Progress in Chemistry), 2006, 18(5): 542-549
[22] Zhamu A, Chen G, Liu C, Neff D, Fang Q, Yu Z, Xiong W, Wang Y, Wang X, Jang B Z. Energ. Environ. Sci., 2012, 5(2): 5701-5707. DOI: 10.1039/C2EE02911A
[23] 高鹏(Gao P), 韩家军(Han J J), 朱永明(Zhu Y M), 张翠芬(Zhang C F), 李宁(Li N). 化学进展(Progress in Chemistry), 2009, 21(7/8): 1678-1686
[24] Prowald A, El Abedin S Z, Borisenko N, Endres F. Z. Phys. Chem., 2012, 226(2): 121-128
[25] Padbury R, Zhang X. J. Power Sources, 2011, 196: 4436-4444
[26] Kraytsberg A, Ein-Eli Y. J. Power Sources, 2011, 196: 886-893
[27] Debe M K. Nature, 2012, 486(7401): 43-51
[28] Chen Z, Yu A, Higgins D, Li H, Wang H, Chen Z. Nano Lett., 2012, 12: 1946-1952
[29] Cheng F, Chen J. Chem. Soc. Rev., 2012, 41: 2172-2192
[30] Liu H, Xing Y. Electrochem. Commun., 2011, 13: 646-649
[31] Zhang D, Fu Z, Wei Z, Huang T, Yu A. J. Electrochem. Soc., 2010, 157: A362-A365
[32] Débart A, Paterson A J, Bao J, Bruce P G. Angew. Chem., 2008, 120: 1-5
[33] Mizuna F, Nakanishi S, Kotani Y, Yokoishi S, Iba H. Electrochemistry, 2010, 78: 403-405
[34] Débart A, Bao J, Armstrong G, Bruce P G. J. Power Sources, 2007, 174: 1177-1182
[35] Nakaniski S, Mizuno F, Nobuhara K, Abe T, Iba H. Carbon, 2012, 50(13): 4794-4803
[36] Zhang S S, Foster D, Read J. J. Power Sources, 2010, 195: 1235-1240
[37] Andrei P, Zheng J, Hendrickson M, Plichta E. J. Electrochem. Soc., 2010, 157: A1287-A1295
[38] Beattie S, Manolescu D, Blair S. J. Electrochem. Soc., 2009, 156: A44-A47
[39] Abraham K, Jiang Z. J. Electrochem. Soc., 1996, 143: 1-5
[40] Ogasawara T, Débart A, Holzapfel M, Novák P, Bruce P G. J. Am. Chem. Soc., 2006, 128: 1390-1393
[41] Peng Z, Freunberger S A, Hardwick L J, Chen Y, Giordani V, Bardé F, Novák P, Graham D, Tarascon J M, Bruce P G. Angew. Chem. Int. Ed., 2011, 50(28): 6351-6355
[42] Seriani N. Nanotechnology, 2009, 20: art. no. 445703
[43] Bryantsev V S, Blanco M, Faglioni F. J. Phys. Chem. A, 2010, 114: 8165-8169
[44] Lau K C, Curtiss L A, Greeley J. J. Phys. Chem. C, 2011, 115: 23625-23633
[45] Laoire C O, Mukerjee S, Abraham K, Plichta E J, Hendrickson M A. J. Phys. Chem. C, 2009, 113: 20127-20134
[46] Laoire C O, Mukerjee S, Abraham K, Plichta E J, Hendrickson M A. J. Phys. Chem. C, 2010, 114: 9178-9186
[47] Hassoun J, Croce F, Armand M, Scrosati B. Angew. Chem. Int. Ed., 2011, 50: 2999-3002
[48] Lu Y C, Gasteiger H A, Crumlin E, McGuire R Jr, Yang S H. J. Electrochem. Soc., 2010, 157: A1016-A1025
[49] Read J. J. Electrochem. Soc., 2002, 149: A1190-A1195
[50] McCloskey B, Bethune D, Shelby R, Girishkumar G, Luntz A. J. Phys. Chem. Lett., 2011, 2: 1161-1166
[51] Laoire C , Mukerjee S, Plichta E J, Hendrickson M A, Abraham K. J. Electrochem. Soc., 2011, 158: 302-308
[52] Mo Y, Ong S P, Ceder G. Phys. Rev. B, 2011, 84: art. no. 205446
[53] Lu Y C, Kwabi D G, Yao K P C, Harding J R, Zhou J, Zuin L, Yang S H. Energ. Environ. Sci., 2011, 4: 2999-3007
[54] Chen J, Hummelshøj J S, Thygesen K S, Myrdal J S G, Nørskov J K, Vegge T. Catal. Today, 2011, 165: 2-9
[55] Radin M D, Rodriguez J F, Tian F, Siegel D J. J. Am. Chem. Soc., 2012, 134: 1093-1103
[56] Xu W, Xu K, Viswanathan V V, Towne S A, Hardy J S, Xiao J, Nie Z, Hu D, Wang D, Zhang J G. J. Power Sources, 2011, 196: 9631-9639
[57] Xiao J, Wang D, Xu W, Williford R E, Liu J, Zhang J G. J. Electrochem. Soc., 2010, 157: A487-A492
[58] Hayashi M, Minowa H, Takashi M, Shodai T. Electrochemistry, 2010, 78: 325-328
[59] Yang X, He P, Xia Y. Electrochem. Commun., 2009, 11: 1127-1130
[60] Minowa H, Hayashi M, Takahashi M, Shodai T. Electrochemistry, 2010, 78: 353-356
[61] Tran C, Yang X Q, Qu D. J. Power Sources, 2010, 195: 2057-2063
[62] Mirzaeian M, Hall P J. Electrochimica Acta, 2009, 54: 7444-7451
[63] Zhang G, Zheng J, Liang R, Zhang C, Wang B, Hendrickson M, Plichta E. J. Electrochem. Soc., 2010, 157: A953-A956
[64] Zhang G Q, Zheng J P, Liang R, Zhang C, Wang B, Au M, Hendrickson M, Plichta E J. J. Electrochem. Soc., 2011, 158: A822-A827
[65] Mitchell R R, Gallant B M, Thompson C V, Yang S H. Energ. Environ. Sci., 2011, 4: 2952-2958
[66] Xiao J, Mei D, Li X, Xu W, Wang D, Graff G L, Bennett W D, Nie Z, Saraf L V, Aksay I A, Liu J, Zhang J G. Nano Lett., 2011, 11: 5071-5078
[67] Li Y, Wang J, Li X, Geng D, Li R, Sun X. Chem. Commun., 2011, 47: 9438-9440
[68] Sun B, Wang B, Su D, Xiao L, Ahn H, Wang G. Carbon, 2012, 50: 727-733
[69] Xu Y, Shelton W A. J. Electrochem. Soc., 2011, 158: A1177-A1184
[70] Kichambare P, Kumar J, Rodrigues S, Kumar B. J. Power Sources, 2011, 196: 3310-3316
[71] Kichambare P, Rodrigues S, Kumar J. ACS Appl. Mater. Inter., 2012, 4: 49-52
[72] Li Y, Wang J, Li X, Liu J, Geng D, Yang J, Li R, Sun X. Electrochem. Commun., 2011, 13: 668-672
[73] 査全性(Zha Q X). 电极过程动力学导论(Introduction to electrode processes kinetics). 北京: 科学出版社(Beijing: Science Press), 2002. 258-274
[74] Jorissen L. J. Power Sources, 2006, 155: 23-32
[75] Débart A, Bao J, Armstrong G, Bruce P G. J. Power Sources, 2007, 174: 1177-1182
[76] Zhang S S, Ren X, Read J. Electrochim. Acta, 2011, 56: 4544-4548
[77] Ren X, Zhang S S, Tran D T, Read J. J. Mater. Chem., 2011, 21: 10118-10125
[78] Thapa A K, Saimen K, Ishihara T. Electrochem. Solid-State Lett., 2010, 13: A165-A167
[79] Cheng H, Scott K. Appl. Catal. B: Environ., 2011, 108/109: 140-151
[80] Lu Y C, Gasteiger H A, Parent M C, Chiloyan V, Yang S H. Electrochem. Solid-State Lett., 2010, 13: A69-A72
[81] Lu Y C, Xu Z, Gasteiger H A, Chen S, Hamad-Schifferli K, Yang S H. J. Am. Chem. Soc., 2010, 132: 12170-12171
[82] Thapa A K, Ishihara T. J. Power Sources, 2010, 196: 7016-7020
[83] Thapa A K, Hidaka Y, Hagiwara H, Ida H, Ishihara T. J. Electrochem. Soc., 2011, 158: A1483-A1489
[84] Débart A, Paterson A J, Bao J, Bruce P G. Angew. Chem., 2008, 120: 1-5
[85] Cheng H, Scott K. J. Power Sources, 2010, 195: 1370-1374
[86] Li J, Wang N, Zhao Y, Ding Y, Guan L. Electrochem. Commun., 2011, 13: 698-700
[87] Jin L, Xu L, Morein C, Chen C H, Lai M, Dharmarathna S, Dobley A, Suib S L. Adv. Funct. Mater., 2010, 20: 3373-3382
[88] Kim K S, Park Y J. Nanoscale Res. Lett., 2012, 7: 1-8
[89] Cui Y, Wen Z, Liu Y. Energ. Environ. Sci., 2011, 4: 4727-4734
[90] Harding J R, Lu Y C, Tsukada Y, Yang S H. Phys. Chem. Chem. Phys., 2012: 14(30): 10540-10546. DOI: 10.1039/C2CP41761H
[91] Liang Y, Li Y, Wang H, Zhou J, Wang J, Regier T, Dai H. Nat. Mater., 2011, 10: 780-786
[92] Yang Y, Shi M, Zhou Q F, Li Y S, Fu Z W. Electrochem. Commun., 2012, 20: 11-14
[93] Lu Y, Wen Z, Jin J, Cui Y, Wu M, Sun S. J. Solid St. Electrochem., 2012, 16: 1863-1868
[94] Wang L, Zhao X, Lu Y, Xu M, Zhang D, Ruoff R S, Stevenson K J, Goodenough J B. J. Electrochem. Soc., 2011, 158: A1379-A1382
[95] Wang H, Yang Y, Liang Y, Zheng G, Li Y, Cui Y, Dai H. Energ. Environ. Sci., 2012, 5: 7931-7935
[96] Benbow E M, Kelly S P, Zhao L, Reutenauer J W, Suib S L. J. Phys. Chem. C, 2011, 115: 22009-22017
[97] Lu Y C, Gasteiger H A, Yang S H. J. Am. Chem. Soc., 2011, 133: 19048-19051
[98] Lu Y C, Gasteiger H A, Yang S H. Electrochem. Solid-State Lett., 2011, 14: A70-A74
[99] Giordani V, Freunberger S A, Bruce P G, Tarascon J M, Larcher D. Electrochem. Solid-State Lett., 2010, 13: A180-A183
[100] Suntivich J, Gasteiger H A, Yabuuchi N, Nakanishi H, Goodenough J B, Yang S H. Nat. Chem., 2011, 3: 546-550
[101] Adams J, Karulkar M. J. Power Sources, 2012, 199: 247-255
[102] Shao Y, Park S, Xiao J, Zhang J G, Wang Y, Liu J. ACS Catalysis, 2012, 2: 844-857
[103] 孙彦平 (Sun Y P). 化工学报(J. Chem. Ind. Eng. (China)), 2007, 58(9): 2161-2168
[104] Albertus P, Girishkumar G, McCloskey B, Sanchez-Carrera R S, Kozinsky B, Christensen J, Luntz A C. J. Electrochem. Soc., 2011, 158: A343-A351
[105] Viswanathan V, Thygesen K S, Hummelshoj J S, Norskov J K, Girishkumar G, McCloskey B D, Luntz A C. J. Chem. Phys., 2011, 135: art. no. 214704
[106] Sandhu S S, Fellner J P, Brutchen G W. J. Power Sources, 2007, 164: 365-371
[107] Andrei P, Zheng J P, Hendrickson M, Plichta E J. J. Electrochem. Soc., 2010, 157: A1287-A1295
[108] Williford R E, Zhang J G. J. Power Sources, 2009, 194: 1164-1170
[109] Yang X H Xia Y Y. J. Solid State Electrochem., 2010, 14: 109-114
[110] Younesi S R, Urbonaite S, Bjrefors F, Edstrm K. J. Power Sources, 2011, 196: 9835-9838
[111] Wang Z L, Xu D, Xu J J, Zhang L L, Zhang X B. Adv. Fun. Mater., 2012, DOI: 10.1002/adfm. 201200403
[112] Yang Y, Sun Q, Li Y S, Li H, Fu Z W. J. Electrochem. Soc., 2011, 158: B1211-B1216
[113] Wang Y, Zhou H. Energ. Environ. Sci., 2011, 4: 1704-1707
[114] Read J, Mutolo K, Ervin M, Behl W, Wolfenstine J, Driedger A, Foster D. J. Electrochem. Soc., 2003, 150: A1351-A1356
[115] Tran C, Kafle J, Yang X Q, Qu D. Carbon, 2011, 49: 1266-1271
[116] Xu W, Xiao J, Wang D, Zhang J, Zhang J G. J. Electrochem. Soc., 2010, 157: A219-A224
[117] Mizuna F, Nakanishi S, Kotani Y, Yokoishi S, Iba H. Electrochemistry, 2010, 78: 403-405
[118] Freunberger S A, Chen Y, Peng Z, Griffin J M, Hardwick L J, Bardeé F, Novaák P, Bruce P G. J. Am. Chem. Soc., 2011, 133: 8040-8047
[119] Bryantsev V S, Blanco M. J. Phys. Chem. Lett., 2011, 2: 379-383
[120] Bryantsev V S, Giordani V, Walker W, Blanco M, Zecevic S, Sasaki K, Uddin J, Addison D, Chase G V. J. Phys. Chem. A, 2011, 115: 12399-12409
[121] Veith G M, Dudney N J, Howe J, Nanda J. J. Phys. Chem. C, 2011, 115: 14325-14333
[122] Laino T, Curioni A. Chemistry-A European Journal, 2012, 18: 3421-3421
[123] Xiao J, Hu J, Wang D, Hu D, Xu W, Graff G L, Nie Z, Liu J, Zhang J G. J. Power Sources, 2011, 196: 5674-5678
[124] Read J. J. Electrochem. Soc., 2006, 153: A96-A100
[125] Crowther O, Meyer B, Salomon M. Electrochem. Solid-State Lett., 2011, 14: A113-A115
[126] Zhang S S, Read J. J. Power Sources, 2011, 196: 2867-2870
[127] Freunberger S A, Chen Y, Drewett N E, Hardwick L J, Bardé F, Bruce P G. Angew. Chem. Int. Ed., 2011, 50: 8609-8613
[128] Zhang Z, Lu J, Assary R S, Du P, Wang H H, Sun Y K, Qin Y, Lau K C, Greeley J, Redfern P C, Iddir H, Curtiss L A, Amine K. J. Phys. Chem. C, 2011, 115: 25535-25542
[129] Bryantsev V S, Faglioni F. J. Phys. Chem. A, 2012, 116(26): 7128-7138. DOI: 10.1021/jp301537w
[130] Wang H, Xie K. Electrochim. Acta, 2012, 64: 29-34
[131] Black R W, Oh S H, Lee J H, Yim T, Adams B, Nazar L F. J. Am. Chem. Soc., 2012, 134: 2902-2905
[132] Oh S H, Yim T, Pomerantseva E, Nazar L F. Electrochem. Solid-State Lett., 2011, 14: A185-A188
[133] Veith G M, Nanda J, Delmau L H, Dudney N J. J. Phys. Chem. Lett., 2012, 3: 1242-1247
[134] McCloskey B D, Speidel A, Scheffler R, Miller D C, Viswanathan V, Hummelshøj J S, Nørskov J K, Luntz A C. J. Phys. Chem. Lett., 2012, 3: 997-1001
[135] Allen C J, Mukerjee S, Plichta E J, Hendrickson M A, Abraham K M. J. Phys. Chem. Lett., 2011, 2: 2420-2424
[136] Hayashi M, Minowa H, Saito K. ECS Meeting Abstracts, 2011, 1102: 336
[137] Garsuch A, Badine D M, Leitner K, Gasparotto L H S, Borisenko N, Endres F, Vracar M, Janek J, Oesten R. Z. Phys. Chem., 2011, 225: 1-13
[138] Kumar B, Kumar J, Leese R, Fellner J P, Rodrigues S J, Abraham K M. J. Electrochem. Soc., 2010, 157: A50-A54
[139] Cecchetto L, Salomon M, Scrosati B, Croce F. J. Power Sources, 2012, 213: 233-238
[140] Jung H G, Hassoun J, Park J B, Sun Y K, Scrosati B. Nat. Chem., 2012, 4: 579-585
[1] 鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
[2] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[3] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[4] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[5] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[6] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[7] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.
[8] 杨启悦, 吴巧妹, 邱佳容, 曾宪海, 唐兴, 张良清. 生物基平台化合物催化转化制备糠醇[J]. 化学进展, 2022, 34(8): 1748-1759.
[9] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[10] 蒋峰景, 宋涵晨. 石墨基液流电池复合双极板[J]. 化学进展, 2022, 34(6): 1290-1297.
[11] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[12] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[13] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[14] 杨世迎, 范丹阳, 保晓娟, 傅培瑶. 碳材料修饰零价铝的作用机制[J]. 化学进展, 2022, 34(5): 1203-1217.
[15] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
阅读次数
全文


摘要

非水系二次锂-氧电池正极