English
新闻公告
More
化学进展 前一篇   后一篇

所属专题: 锂离子电池

• 综述与评论 •

结构可控的炭基材料在锂离子电池中的应用

韩飞, 陆安慧, 李文翠*   

  1. 大连理工大学精细化工国家重点实验室 化工学院 化工与环境生命学部 大连 116024
  • 收稿日期:2012-05-01 修回日期:2012-08-01 出版日期:2012-12-24 发布日期:2012-12-11
  • 通讯作者: 李文翠 E-mail:wencuili@dlut.edu.cn
  • 基金资助:

    教育部新世纪优秀人才支持计划项目(No.NCET-08-0075)和中央高校基本科研业务费专项资金项目(No. DUT12ZD218)资助

Structure Controlled Carbon-Based Materials for Lithium Ion Battery

Han Fei, Lu Anhui, Li Wencui*   

  1. State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116024, China
  • Received:2012-05-01 Revised:2012-08-01 Online:2012-12-24 Published:2012-12-11
为了满足人们对高性能锂离子电池的需求,对电极材料进行结构设计和表面改性非常重要。基于炭材料独特的优势,通过使用炭材料或是制备炭基复合物能够极大地提高锂离子电池的电化学性能。基于本实验室的研究基础,本文总结了炭基材料在锂离子电池应用领域所发挥的重要作用,综述了炭材料和炭基复合材料作为锂离子电极材料的研究进展,着重阐述了通过引入炭材料和控制材料结构来提高电池电化学性能。在炭负极材料方面,主要概述了新型炭负极材料(碳纳米管、石墨烯和无定形炭)的各种形貌结构对电 化学性能的影响及各自的优缺点。在含炭复合电极材料方面,详细介绍了正负极复合材料的制备方法、结构设计、形貌控制及复合物中炭对于提高正负极活性材料的导电性和结构稳定性所发挥的积极作用。最后,对于炭基材料在锂离子电池领域需要解决的问题进行了探讨,以期提高锂离子电池的应用性能。
In order to meet the demand for high-performance lithium ion battery, it has been found that structure design and surface modification of the electrode materials are of great importance. Based on the unique advantages of carbon materials, the electrochemical performance of lithium ion battery can be improved largely through recruiting carbon or/and carbon-based composite materials. Based on our research, we summarize the significant effects of carbon-based materials for lithium ion battery, and review the recent advances of carbon materials and carbon-based composite materials as the lithium ion electrodes, with the focus on the introduction of carbon materials and control of material structures to improve the electrochemical performance. In carbon anode materials, we review the influence of the various morphologies and structures of novel carbon anode materials (carbon nanotubes, graphene and amorphous carbon) on the electrochemical performance and their advantages and disadvantages. In carbon-containing composite electrode materials, we summarize the preparation method, structure design and morphology control of cathode and anode materials. Meanwhile, carbon materials are found to be beneficial for improving the electrical conductivity and stabilizing the structure of active materials in cathodes and anodes. In the end, the unsolved problems of carbon-based materials in lithium ion battery are further discussed to look forward to further extensive applications of lithium ion battery. Contents
1 Introduction
2 Effects of carbon materials for lithium ion battery
2.1 Improve electrical conductivity of materials
2.2 Restrain volume expansion of particles
2.3 Prevent aggregation and inactivation of nanoparticles
2.4 Reduce surface side reactions
2.5 Stabilize structure of active matetrials
3 Carbon anode materials for lithium ion battery
3.1 Conventional carbon anode materials
3.2 Novel carbon anode materials
4 Carbon-containing composite anode materials
4.1 Mechanism of alloy reaction
4.2 Mechanism of insertion/extraction reaction
4.3 Mechanism of conversion reaction
5 Carbon-containing composite cathode materials
5.1 LiMPO4
5.2 V2O5
5.3 S
6 Conclusion and outlook

中图分类号: 

()
[1] Armand M, Tarascon J M. Nature, 2008, 451: 652-657
[2] Jeong G, Kim Y U, Kim H, Kim Y J, Sohn H J. Energy Environ. Sci., 2011, 4(6): 1986-2002
[3] Bruce P G, Scrosati B, Tarascon J M. Angew. Chem. Int. Ed., 2008, 47(16): 2930-2946
[4] Yuan C Z, Gao B, Shen L F, Yang S D, Hao L, Lu X J, Zhang F, Zhang L J, Zhang X G. Nanoscale, 2011, 3(2): 529-545
[5] Hao G P, Li W C, Qian D. Lu A H. Adv. Mater., 2010, 22(7): 853-857
[6] Kaskhedikar N A, Maier J. Adv. Mater., 2009, 21(25/26): 2664-2680
[7] Hu Y S, Adelhelm P, Smarsly B M, Hore S, Antonietti M, Maier J. Adv. Funct. Mater., 2007, 17(12): 1873-1878
[8] Paek S M, Yoo E, Honma I. Nano Lett., 2009, 9(1): 72-75
[9] Oh S W, Myung S T, Oh S M, Oh K H, Amine K, Scrosati B, Sun Y K. Adv. Mater., 2010, 22(43): 4842-4845
[10] Zhu G N, Liu H J, Zhuang J H, Wang C X, Wang Y G, Xia Y Y. Energy Environ. Sci., 2011, 4(10): 4016-4022
[11] Wang J, Sun X. Energy Environ. Sci., 2012, 5(1): 5163-5185
[12] Su L, Jing Y, Zhou Z. Nanoscale, 2011, 3(10): 3967-3983
[13] Guo Y G, Hu J S, Wan L J. Adv. Mater., 2008, 20(15): 2878-2887
[14] Li H, Zhao H. Chem. Commun., 2012, 48(9): 1201-1217
[15] 高文超(Gao W C), 黄桃(Huang T), 沈宇栋(Shen Y D), 余爱水(Yu A S). 物理化学学报(Acta Phys. Chim. Sin. ), 2011, 27(9): 2129-2134
[16] Che G, Lakshmi B B, Fisher E R, Martin C R. Nature, 1998, 393: 346-349
[17] Zhou J, Song H, Fu B, Wu B, Chen X. J. Mater. Chem., 2010, 20(14): 2794-2800
[18] Zhang J, Hu Y S, Tessonnier J P, Weinberg G, Maier J, Schlögl R, Su D S. Adv. Mater., 2008, 20(8): 1450-1455
[19] Chen J, Minett A I, Liu Y, Lynam C, Sherrell P, Wang C, Wallace G G. Adv. Mater., 2008, 20(3): 566-570
[20] 徐秀娟(Xu X J), 秦金贵(Qin J G), 李振(Li Z). 化学进展(Progress in Chemistry), 2009, 21(12): 2559-2567
[21] Lee S H, Kim H W, Hwang J O, Lee W J, Kwon J, Bielawski C W, Ruoff R S, Kim S O. Angew. Chem. Int. Ed., 2010, 49(52): 10084-10088
[22] Chen Z, Ren W, Gao L, Liu B, Pei S, Cheng H M. Nature Mater., 2011, 10: 424-428
[23] Sun Y, Wu Q, Shi G. Energy Environ. Sci., 2011, 4(4): 1113-1132
[24] Yoo E, Kim J, Hosono E, Zhou H, Kudo T, Honma I. Nano Lett., 2008, 8 (8): 2277-2282
[25] Wang H, Zhang C, Liu Z, Wang L, Han P, Xu H, Zhang K, Dong S, Yao J, Cui G. J. Mater. Chem., 2011, 21(14): 5430-5434
[26] Liang M, Zhi L. J. Mater. Chem., 2009, 19(33): 5871-5878
[27] Reddy A L M, Srivastava A, Gowda S R, Gullapalli H, Dubey M, Ajayan P M. ACS Nano, 2010, 4(11): 6337-6342
[28] Zhao X, Hayner C M, Kung M C, Kung H H. ACS Nano, 2011, 5(11): 8739-8749
[29] Kaskhedikar N A, Maier J. Adv. Mater., 2009, 21(25/26): 2664-2680
[30] Zhou H, Zhu S, Hibino M, Honma I, Ichihara M. Adv. Mater., 2003, 15(24): 2107-2111
[31] Hu Y S, Adelhelm P, Smarsly B M, Hore S, Antonietti M, Maier J. Adv. Funct. Mater., 2007, 17(12): 1873-1878
[32] Hao G P, Han F, Guo D C, Fan R J, Xiong G, Li W C, Lu A H. J. Phys. Chem. C, 2012, 116(18): 10303-10311
[33] Guo B, Wang X, Fulvio P F, Chi M, Mahurin S M, Sun X G, Dai S. Adv. Mater., 2011, 23(40): 4661-4666
[34] Han F D, Bai Y J, Liu R, Yao B, Qi Y X, Lun N, Zhang J X. Adv. Energy Mater., 2011, 1(5): 798-801
[35] 龚金保(Gong J B), 汪继强(Wang J Q). 复旦学报(Journal of Fudan University), 2004, 43(4): 500-506
[36] Ji L, Lin Z, Alcoutlabi M, Zhang X. Energy Environ. Sci., 2011, 4(8): 2682-2699
[37] Jiang J, Li Y, Liu J, Huang X. Nanoscale, 2011, 3(1): 45-58
[38] Chen J, Liang J, Tao Z, Chen J. Adv. Mater., 2011, 23(15): 1695-1715
[39] Park M H, Kim M G, Joo J, Kim K, Kim J, Ahn S, Cui Y, Cho J. Nano Lett., 2009, 9(11): 3844-3847
[40] Deng D, Lee J Y. Chem. Mater., 2008, 20(5): 1841-1846
[41] Lai X, Halpert J E, Wang D. Energy Environ. Sci., 2012, 5(2): 5604-5618
[42] Yu Y, Chen C H, Shi Y. Adv. Mater., 2007, 19(7): 993-997
[43] Zhang L Q, Liu X H, Liu Y, Huang S, Zhu T, Gui L, Mao S X, Ye Z Z, Wang C M, Sullivan J P, Huang J Y. ACS Nano, 2011, 5(6): 4800-4809
[44] Kim H, Cho J. Nano Lett., 2008, 8(11): 3688-3691
[45] Han F, Li W C, Li M R, Lu A H. J. Mater. Chem., 2012, 22(19): 9645-9651.
[46] Zhang W M, Hu J S, Guo Y G, Zheng S F, Zhong L S, Song W G, Wan L J. Adv. Mater., 2008, 20(6): 1160-1165
[47] Wang Y, Zeng H C, Lee J Y. Adv. Mater., 2006, 18(5): 645-649
[48] Yu Y, Gu L, Wang C, Dhanabalan A, Aken P A, Maier J. Angew. Chem. Int. Ed., 2009, 48(35): 6485-6489
[49] Paek S M, Yoo E, Honma I. Nano Lett., 2009, 9(1): 72-75
[50] Zhao X, Hayner C M, Kung M C, Kung H H. Adv. Energy Mater., 2011, 1(6): 1079-1084
[51] Kang E, Jung Y S, Kim G H, Chun J, Wiesner U, Dillon A C, Kim J K, Lee J. Adv. Funct. Mater., 2011, 21(22): 4349-4357
[52] Su L, Jing Y, Zhou Z. Nanoscale, 2011, 3(10): 3967-3983
[53] 唐致远(Tang Z Y), 阳晓霞(Yang X X), 陈玉红(Chen Y H), 贺艳兵(He Y B). 电源技术(Chinese Journal of Power Souvces), 2007, 131(4): 332-336
[54] Zaghib K, Simoneau M, Armand M, Gauthier M. J. Power Sources, 1999, 81/82: 300-305
[55] Guo Y G, Hu Y S, Sigle W, Maier J. Adv. Mater., 2007, 19(16): 2087-2091
[56] Zhao L, Hu Y S, Li H, Wang Z, Chen L. Adv. Mater., 2011, 23(11): 1385-1388
[57] Yang S, Feng X, Müllen K. Adv. Mater., 2011, 23(31): 3575-3579
[58] Cao F F, Guo Y G, Zheng S F, Wu X L, Jiang L Y, Bi R R, Wan L J, Maier J. Chem. Mater. 2010, 22(5): 1908-1914
[59] Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon J M. Nature, 2000, 407: 496-499
[60] Sun X, Liu J, Li Y. Chem. Mater., 2006, 18(15): 3486-3494
[61] Li H, Wang Z, Chen L, Huang X. Adv. Mater., 2009, 21(45): 4593-4607
[62] Grugeon S, Laruelle S, Dupont L, Tarascon J M. Solid State Sci., 2003, 5(6): 895-904
[63] Zhang W M, Wu X L, Hu J S, Guo Y G, Wan L J. Adv. Funct. Mater., 2008, 18(24): 3941-3946
[64] Ban C, Wu Z, Gillaspie D T, Chen L, Yan Y, Blackburn J L, Dillon A C. Adv. Mater., 2010, 22(20): E145-E149
[65] Wang Y, Zhang H J, Lu L, Stubbs L P, Wong C C, Lin J. ACS Nano, 2010, 4(8): 4753-4761
[66] Zhi L, Hu Y S, Hamaoui B E, Wang X, Lieberwirth I, Kolb U, Maier J, Müllen K. Adv. Mater., 2008, 20(9): 1727-1731
[67] Reddy A L M, Shaijumon M M, Gowda S R, Ajayan P M. Nano Lett., 2009, 9(3): 1002-1006
[68] 王兆翔(Wang Z X), 陈立泉(Chen L Q). 电源技术(Chinese Journal of Power Sources), 2008, 132(5): 287-292
[69] 于锋(Yu F), 张敬杰(Zhang J J), 王昌胤(Wang C Y), 袁静(Yuan J), 杨岩峰(Yang Y F), 宋广智(Song G Z). 化学进展(Progress in Chemistry), 2010, 22(1): 9-18
[70] Yang J, Xu J J. J. Electrochem. Soc., 2006, 153(4): A716-A723
[71] Huang H, Yin S C, Kerr T, Taylor N, Nazar L F. Adv. Mater., 2002, 14(21): 1525-1528
[72] 赖桂堂(Lai G T), 李大光(Li D G), 李军(Li J), 黄慧民(Huang H M), 夏信德(Xia X D). 材料研究与应用(Materials Research and Application), 2007, 1(4): 256-259
[73] Wang J, Sun X. Energy Environ. Sci., 2012, 5(1): 5163-5185
[74] Wu X L, Jiang L Y, Cao F F, Guo Y G, Wan L J. Adv. Mater., 2009, 21(25/26): 2710-2714
[75] Wang Y, Wang Y, Hosono E, Wang K, Zhou H. Angew. Chem. Int. Ed., 2008, 47(39): 7461-7465
[76] Oh S W, Myung S T, Oh S M, Oh K H, Amine K, Scrosati B, Sun Y K. Adv. Mater., 2010, 22(43): 4842-4845
[77] Doeff M M, Wilcox J D, Kostecki R, Lau G. J. Power Sources, 2006, 163: 180-184
[78] Zhou X, Wang F, Zhu Y, Liu Z. J. Mater. Chem., 2011, 21(10): 3353-3358
[79] Chan C K, Peng H, Twesten R D, Jarausch K, Zhang X F, Cui Y. Nano Lett., 2007, 7(2): 490-495
[80] Wang S, Li S, Sun Y, Feng X, Chen C. Energy Environ. Sci., 2011, 4(8): 2854-2857
[81] 张勇(Zhang Y), 刘玉文(Liu Y W), 程玉山(Cheng Y S), 胡信国(Hu X G). 电池(Battery Bimonthly), 2005, 35(5): 401-402
[82] Passerini S, Le D B, Smyrl W H, Berrettoni M, Tossici R, Marassi R, Giorgetti M. Solid State Ionics, 1997, 104(3/4): 195-204
[83] Hu Y S, Liu X, Müller J O, Schlögl R, Maier J, Su D S. Angew. Chem. Int. Ed., 2009, 48(1): 210-214
[84] Sathiya M, Prakash A S, Ramesha K, Tarascon J M, Shukla A K. J. Am. Chem. Soc., 2011, 133(40): 16291-16299
[85] Yamada H, Tagawa K, Komatsu M, Moriguchi I, Kudo T. J. Phys. Chem. C, 2007, 111(23): 8397-8402
[86] 王维坤(Wang W K), 余仲宝(Yu Z B), 苑克国(Yuan K G), 王安邦(Wang A B), 杨裕生(Yang Y S). 化学进展(Progress in Chemistry), 2011, 23(2/3): 540-547
[87] Ji X, Nazar L F. J. Mater. Chem., 2010, 20(44): 9821-9826
[88] Zheng G, Yang Y, Cha J J, Hong S S, Cui Y. Nano Lett., 2011, 11(10): 4462-4467
[89] Guo J, Xu Y, Wang C. Nano Lett., 2011, 11(10): 4288-4294
[90] 王维坤(Wang W K), 余仲宝(Yu Z B), 王安邦(Wang A B), 苑克国(Yuan K G), 杨裕生(Yang Y S). 第14届全国电化学会议论文集(The 14th National Conference of Electrochemistry). 扬 州(Yangzhou): 扬州大学(Yangzhou University), 2007. 1058-1059
[91] Ji X L, Lee K T, Nazar L F. Nat. Mater., 2009, 8: 500-506
[92] Ji X L, Evers S, Black R, Nazar L F. Nat. Commun., 2011, 2: art. no. 325
[93] He G, Ji X, Nazar L. Energy Environ. Sci., 2011, 4(8): 2878-2883
[94] Zhang B, Qin X, Li G R, Gao X P. Energy Environ. Sci., 2010, 3(10): 1531-1537
[95] Jayaprakash N, Shen J, Moganty S S, Corona A, Archer L A. Angew. Chem. Int. Ed., 2011, 50(26): 5904-5908
[96] Ji L, Rao M, Zheng H, Zhang L, Li Y, Duan W, Guo J, Cairns E J, Zhang Y. J. Am. Chem. Soc., 2011, 133(46): 18522-18525
[1] 朱国辉, 还红先, 于大伟, 郭学益, 田庆华. 废旧锂离子电池选择性提锂[J]. 化学进展, 2023, 35(2): 287-301.
[2] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[3] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[4] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
[5] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[6] 高金伙, 阮佳锋, 庞越鹏, 孙皓, 杨俊和, 郑时有. 高电压锂离子正极材料LiNi0.5Mn1.5O4高温特性[J]. 化学进展, 2021, 33(8): 1390-1403.
[7] 黄国勇, 董曦, 杜建委, 孙晓华, 李勃天, 叶海木. 锂离子电池高压电解液[J]. 化学进展, 2021, 33(5): 855-867.
[8] 张长欢, 李念武, 张秀芹. 柔性锂离子电池的电极[J]. 化学进展, 2021, 33(4): 633-648.
[9] 穆德颖, 刘铸, 金珊, 刘元龙, 田爽, 戴长松. 废旧锂离子电池正极材料及电解液的全过程回收及再利用[J]. 化学进展, 2020, 32(7): 950-965.
[10] 庄全超, 杨梓, 张蕾, 崔艳华. 锂离子电池的电化学阻抗谱分析研究进展[J]. 化学进展, 2020, 32(6): 761-791.
[11] 吴战, 李笑涵, 钱奥炜, 杨家喻, 张文魁, 张俊. 基于无机电致变色材料的变色储能器件[J]. 化学进展, 2020, 32(6): 792-802.
[12] 汪靖伦, 冉琴, 韩冲宇, 唐子龙, 陈启多, 秦雪英. 锂离子电池有机硅功能电解液[J]. 化学进展, 2020, 32(4): 467-480.
[13] 张伟, 齐小鹏, 方升, 张健华, 史碧梦, 杨娟玉. 碳在锂离子电池硅碳复合材料中的作用[J]. 化学进展, 2020, 32(4): 454-466.
[14] 陈豪登, 徐建兴, 籍少敏, 姬文晋, 崔立峰, 霍延平. MOFs衍生金属氧化物及其复合材料在锂离子电池负极材料中的应用[J]. 化学进展, 2020, 32(2/3): 298-308.
[15] 王官格, 张华宁, 吴彤, 刘博睿, 黄擎, 苏岳锋. 废旧锂离子电池正极材料资源化回收与再生[J]. 化学进展, 2020, 32(12): 2064-2074.