English
新闻公告
More
化学进展 前一篇   后一篇

• 综述与评论 •

数字PCR技术进展

林彩琴, 姚波*   

  1. 浙江大学化学系 杭州 310058
  • 收稿日期:2012-05-01 修回日期:2012-07-01 出版日期:2012-12-24 发布日期:2012-12-11
  • 通讯作者: 姚波 E-mail:yaobo08@zju.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 20905064, 20890020)和高等学校博士点基金项目(No.20090101120007)资助

Recent Advance in Digital PCR

Lin Caiqin, Yao Bo*   

  1. Department of Chemistry, Zhejiang University, Hangzhou 310058, China
  • Received:2012-05-01 Revised:2012-07-01 Online:2012-12-24 Published:2012-12-11
数字PCR是近年来迅速发展起来的一种定量分析技术。与传统定量PCR技术不同的是数字PCR不依赖于扩增曲线的循环阈值(CT)进行定量,不受扩增效率的影响,也不必采用看家基因和标准曲线,具有很好的准确度和重现性, 可以实现绝对定量分析。迄今为止,已有Fluidigm、Bio-Rad等几家公司相继推出了数字PCR产品,这些产品已经在单细胞分析、癌症早期诊断和产前诊断等研究领域显示出巨大的技术优势和应用前景。本文在现有文献基础上,对数字PCR技术的基本原理和定量方法进行介绍,并对该技术的分类及其特点以及目前的主要应用领域进行评述。
Digital PCR, a new technique derived from traditional PCR and quantitative PCR, has revealed great potential in genetic profiling, prenatal diagnosis, cancer related allel and mutation detection. Digital PCR usually involves two steps: partitioning of limiting dilution sample into tens to thousands of individual reactions followed by PCR amplification and endpoint detection to identify the presence or absence of template molecules in each reaction. Different with real time qPCR which greatly depends on cycle threshold (CT) and requires house-keeping gene and standard curve for relative and absolute quantification, digital PCR performs quantification through direct counting of the wells with positive amplification or calculating the concentration based on Poisson algorithm. It minimizes the measurement uncertainty caused by variation of amplification efficiency and has higher accuracy and reproducibility. In recent years, great efforts have been made to develop new methods for digital PCR to improve its sensitivity and reduce its cost. More and more techniques were commercialized soon after it was freshly published by large companies including Bio-Rad, Life technology and so on. In this article, the principle of digital PCR and its quantification method, different types of this technique and its practical applications are reviewed and discussed. Contents
1 Introduction
2 Principle of digital PCR
3 Quantification method
4 Classification of digital PCR
4.1 Microchamber/plate
4.2 Integrated fluidic circuit(IFC)
4.3 Droplet based digital PCR
5 Applications
5.1 Genetic instability analysis
5.2 Early diagnosis of cancer
5.3 Prenatal diagnosis
5.4 Others
6 Conclusion and outlook

中图分类号: 

()
[1] 黄留玉(Huang L Y). PCR最新技术原理、方法及应用(第二版)(The New PCR Technology, Principle and Application, 2nd ed.). 北京: 化学工业出版社(Beijing: Chemical Industry Press), 2011
[2] 金钦汉(Jin Q H). 科学中国人(Scientific Chinese), 2010, 7: 32-33
[3] Vogelstein B, Kinzler K W. Proc. Natl. Acad. Sci. USA, 1999, 96: 9236-9241
[4] Warren L, Bryder D, Weissman I L, Quake S R. Proc. Natl. Acad. Sci. USA, 2006, 103(47): 17807-17812
[5] Ottesen E A, Hong J W, Quake S R, Leadbetter J R. Science, 2006, 314: 1464-1467
[6] Zhou W, Goodman S N, Galizia G, Lieto E, Ferraraccio F, Pignatelli C, Purdie C A, Piris J, Morris R, Harrison D J, Paty P B, Culliford A, Romans K E, Montgomery E A, Choti M A, Kinzler K W, Vogelstein B. The Lancet, 2002, 359: 219-225
[7] Pohl G, Shih I M. Expert Rev. Mol. Diagn., 2004, 4(1): 41-47
[8] Dennis Lo Y M, Lun F M F, Chan K C A, Tsui N B Y, Chong K C, Lau T K, Leung T Y, Zee B C Y, Cantor C R, Chiu R W K. Proc. Natl. Acad. Sci. USA, 2007, 104(32): 13116-13121
[9] Zimmermann B G, Grill S, Holzgreve W, Zhong X Y, Jackson L G, Hahn S. Prenat Diagn., 2008, 28: 1087-1093
[10] Zhou W, Galizia G, Goodman S N, Romans K E, Kinzler K W, Vogelstein B, Choti M A, Montgomery E A. Nat. Biotech., 2001, 19: 78-81
[11] Fan H C, Quake S R. Anal. Chem., 2007, 79(19): 7576-7579
[12] Diehl F, Li M, Dressman D, He Y P, Shen D, Szabo S, Diaz L A Jr, Goodman S N, David K A, Juhl H, Kinzler K W, Vogelstein B. Proc. Natl. Acad. Sci. USA, 2005, 102(45): 16368-16373
[13] Diehl F, Li M, He Y, Kinzler K W, Vogelstein B, Dressman D. Nat. Methods, 2006, 3(7): 551-559
[14] Zhong Q, Bhattacharya S, Kotsopoulos S, Olson J, Taly V, Griffiths A D, Linka D R, Larson J W. Lab Chip, 2011, 11: 2167-2174
[15] Sanders R, Huggett J F, Bushell C A, Cowen S, Scott D J, Foy C A. Anal. Chem., 2011, 83: 6474-6484
[16] Dube S, Qin J, Ramakrishnan R. Plos One, 2008, 3(8): art. no. e2876
[17] Bhat S, Herrmann J, Armishaw P, Corbisier P, Emslie K R. Anal. Bioanal. Chem., 2009, 394: 457-467
[18] Morrison T, Hurley J, Garcia J, Yoder K, Katz A, Roberts D, Cho J, Kanigan T, Ilyin S E, Horowitz D, Dixon J M, Brenan C J H. Nucleic Acids Res., 2006, 34(18): art. no. e123
[19] Qin J, Jones R C, Ramakrishnan R. Nucleic Acids Research, 2008, 36(18): art. no. e116
[20] Hindson B J, Ness K D, Masquelier D A, Belgrader P, Heredia N J, Makarewicz A J, Bright I J, Lucero M Y, Hiddessen A L, Legler T C, Kitano T K, Hodel M R, Petersen J F, Wyatt P W, Steenblock E R, Shah P H, Bousse L J, Troup C B, Mellen J C, Wittmann D K, Erndt N G, Cauley T H, Koehler R T, So A P, Dube S, Rose K A, Montesclaros L, Wang S L, Stumbo D P, Hodges S P, Romine S, Milanovich F P, White H E, Regan J F, Karlin-Neumann G A, Hindson C M, Saxonov S, Colston B W. Anal. Chem., 2011, 83: 8604-8610
[21] Unger M A, Chou H P, Thorsen T, Scherer A, Quake S R. Science, 2000, 288: 113-116
[22] Heyries K A, Tropini C, VanInsberghe M, Doolin C, Petriv O I, Singhal A, Leung K, Hughesman C B, Hansen C L. Nat. Methods, 2011, 8: 649-651
[23] Men Y F, Fu Y S, Chen Z T, Sims P A, Greenleaf W J, Huang Y Y. Anal. Chem., 2012, 84(10): 4262-4266
[24] Margulies M, Egholm M, Altman W E, Attiya1 S, Bader1 J S, Bemben L A, Berka J, Braverman M S, Chen Y J, Chen Z T, Dewell S B, Du L, Fierro J M, Gomes X V, Godwin B C, He W, Helgesen S, Ho C H, Irzyk G P, Jando S C, Alenquer M L I, Jarvie T P, Jirage K B, Kim J B, Knight J R, Lanza J R, Leamon J H, Lefkowitz S M, Lei M, Li J, Lohman K L, Lu H, Makhijani V B, McDade K E, McKenna M P, Myers E W, Nickerson E, Nobile J R, Plant R, Puc B P, Ronan M T, Roth G T, Sarkis G J, Simons J F, Simpson J W, Srinivasan M, Tartaro K R, Tomasz A, Vogt K A, Volkmer G A, Wang S H, Wang Y, Weiner M P, Yu P, Begley R F, Rothberg J M. Nature, 2005, 437: 376-380
[25] Tawfik D S, Griffiths A D. Nature Biotechnology, 1998, 16: 652-656
[26] Dressman D, Yan H, Traverso G, Kinzler K W, Vogelstein B. Proc. Natl. Acad. Sci. USA, 2003, 100 (15): 8817-8822
[27] Shi X L, Tang C, Wang W, Zhou D Q, Lu Z H. Electrophoresis, 2010, 31: 528-534
[28] Huang H, Qi Z T, Deng L L, Zhou G H, Kajiyamad T, Kambara H. Chem. Commun., 2009, 4094-4096
[29] Beer N R, Wheeler E K, Lee-Houghton L, Watkins N, Nasarabadi S, Hebert N, Leung P, Arnold D W, Bailey C G, Colston B W. Anal. Chem., 2008, 80: 1854-1858
[30] Kiss M M, Ortoleva-Donnelly L, Beer N R, Warner J, Bailey C G, Colston B W, Rothberg J M, Link D R, Leamon J H. Anal. Chem., 2008, 80: 8975-8981
[31] Pinheiro L B, Coleman V A, Hindson C M, Herrmann J, Hindson B J, Bhat S, Emslie K R. Anal. Chem., 2012, 84(2): 1003-1011
[32] Pekin D, Skhiri Y, Baret J C, Corre D L, Mazutis L, Salem C B, Millot F, Harrak A E, Hutchison J B, Larson J W, Link D R, Laurent-Puig P, Griffiths A D, Taly V. Lab Chip, 2011, 11: 2156-2166
[33] Shen F, Du W B, Kreutz J E, Fok A, Ismagilov R F. Lab Chip, 2010, 10: 2666-2672
[34] Kreutz J E, Munson T, Huynh T, Shen F, Du W B, Ismagilov R F. Anal. Chem., 2011, 83: 8158-8168
[35] Leng X F, Zhang W H, Wang C M, Cui L, Yang C Y J. Lab Chip, 2010, 10: 2841-2843
[36] Lengauer C, Kinzler K W, Vogelstein B. Nature, 1998, 396: 643-649
[37] Singer G, Oldt R, Cohen Y, Wang B G, Sidransky D, Kurman R J, Shih I M. Journal of the National Cancer Institute, 2003, 95(6): 484-486
[38] Singer G, Kurman R J, Chang H W, Cho S K R, Shih I M. American Journal of Pathology, 2002, 160(4): 1223-1228
[39] Chang H W, Ali S Z, Cho S K R, Kurman R J, Shih I M. Clin. Cancer Res., 2002, 8: 2580-2585
[40] Hanlon K, Harries L W, Ellard S, Rudin C E. Journal of Molecular Diagnostics, 2009, 11(5): 450-457
[41] Yung T K F, Chan K C A, Mok T S K, Tong J, To K F, Lo Y M D. Clin. Cancer Res., 2009, 15: 2076-2084
[42] Redon R, Ishikawa S, Fitch K R, Feuk L, Perry G H, Andrews T D, Fiegler H, Shapero M H, Carson A R, Chen W W, Cho E K, Dallaire S, Freeman J L, González J R, Gratacòs M, Huang J, Kalaitzopoulos D, Komura D, MacDonald J R, Marshall C R, Mei R, Montgomery L, Nishimura K, Okamura K, Shen F, Somerville M J, Tchinda J, Valsesia A, Woodwark C, Yang F T, Zhang J J, Zerjal T, Zhang J, Armengol L, Conrad D F, Estivill X, Tyler-Smith C, Carter N P, Aburatani H, Lee C, Jones K W, Scherer S W, Hurles M E. Nature, 2006, 444: 444-454
[43] Wang J, Ramakrishnan R, Tang Z, Fan W W, Kluge A, Dowlati A, Jones R C, Ma P C. Clinical Chemistry, 2010, 56(4): 623-632
[44] Whale A S, Huggett J F, Cowen S, Speirs V, Shaw J, Ellison S, Foy C A, Scott D J. Nucleic Acids Research, 2012, 40(11): art. no. e82
[45] Dong S M, Traverso G, Johnson C, Geng L, Favis R, Boynton K, Hibi K, Goodman S N, D'Allessio M, Paty P, Hamilton S R, Sidransky D, Barany F, Levin B, Shuber A, Kinzler K W, Vogelstein B, Jen J. Journal of the National Cancer Institute, 2001, 93(11): 858-865
[46] Yan H, Dobbie Z, Gruber S B, Markowitz S, Romans K, Giardiello F M, Kinzler K W, Vogelstein B. Nature Genetics, 2002, 30: 25-26
[47] Shih I M, Zhou W, Goodman S N, Lengauer C, Kinzler K W, Vogelstein B. Cancer Research, 2001, 61: 818-822
[48] Shih I M, Wang T L, Traverso G, Romans K, Hamilton S R, Ben-Sasson S, Kinzler K W, Vogelstein B. Proc. Natl. Acad. Sci. USA, 2001, 98(5): 2640-2645
[49] Traverso G, Shuber A, Olsson L, Levin B, Johnson C, Hamilton S R, Boynton K, Kinzler K W, Vogelstein B. The Lancet, 2002, 359: 403-404
[50] Chang H W, Lee S M, Goodman S N, Singer G, Cho S K R, Sokoll L J, Montz F J, Roden R, Zhang Z, Chan D W, Kurman R J, Shih I M. Journal of the National Cancer Institute, 2002, 94(22): 1697-1703
[51] Qi Z T, Ma Y J, Deng L L, Wu H P, Zhou G H, Kajiyama T, Kambara H. Analyst, 2011, 136: 2252-2259
[52] Lo Y M D, Chiu R W K. Nature Reviews Genetics, 2007, 8: 71-77
[53] Saito H, Sekizawa A, Morimoto T, Suzuki M, Yanaihara T. The Lancet, 2000, 356: 1170-1176
[54] Ding C M, Chiu R W K, Lau T K, Leung T N, Chan L C, Chan A Y Y, Charoenkwan P, Ng I S L, Law H Y, Ma E S K, Xu X M, Wanapirak C, Sanguansermsri T, Liao C, Ai M A T J, Chui D H K, Cantor C R, Lo Y M D. Proc. Natl. Acad. Sci. USA, 2004, 101: 10762-10767
[55] Lo Y M D, Lun F M F, Chan K C A, Tsui N B Y, Chong K C, Lau T K, Leung T Y, Zee B C Y, Cantor C R, Chiu R W K. Proc. Natl. Acad. Sci. USA, 2007, 104(32): 13116-13121
[56] Luna F M F, Tsuia N B Y, Chana K C A, Leungc T Y, Lauc T K, Charoenkwand P, Chowa K C K, Loa W Y W, Wanapirakd C, Sanguansermsrid T, Cantore C R, Chiua R W K, Lo Y M D. Proc. Natl. Acad. Sci. USA, 2008, 105(50): 19920-19925
[57] Fan H C, Blumenfeld Y J, El-Sayed Y Y, Chueh J, Quake S R. American Journal of Obstetrics & Gynecology, 2009, 543: art. no. e1-7
[58] Shendure J, Porreca G J, Reppas N B, Lin X X, McCutcheon J P, Rosenbaum A M, Wang M D, Zhang K, Mitra R D, Church G M. Science, 2005, 309: 1728-1732
[59] White R A, Blainey P C, Fan H C, Quake S R. BMC Genomics, 2009, 10: 116
[60] Spurgeon S L, Jones R C, Ramakrishnan R. Plos One, 2008, 3(2): art. no. e1662
[61] White A K, VanInsberghe M, Petriv O I, Hamidi M, Sikorski D, Marra M A, Piret J, Apariciof S, Hansen C L. Proc. Natl. Acad. Sci. USA, 2011, 108(34): 13999-14004
[62] Sindelka R, Jonák J, Hands R, Bustin S A, Kubista M. Nucleic Acids Research, 2008, 36(2): 387-392
[63] Weisenberger D J, Trinh B N, Mihaela C, Sharma S, Long T I, Ananthnarayan S, Liang G N, Esteva F J, Hortobagyi G N, McCormick F, Jones P A, Laird P W. Nucleic Acids Research, 2008, 36(14): 4689-4698
[64] Li M, Chen W D, Papadopoulos N, Goodman S N, Bjerregaard N C, Laurberg S, Levin B, Juhl H, Arber N, Moinova H, Durkee K, Schmidt K, He Y P, Diehl F, Velculescu V E, Zhou S B, Diaz L A Jr, Kinzler K W, Markowitz S D, Vogelstein B. Nature Biotechnology, 2009, 27(9): 858-863
[1] 张芳娟, 刘海兵, 高梦琪, 王德富, 牛颜冰, 申少斐. 浓度梯度微流控芯片在药物筛选中的应用[J]. 化学进展, 2021, 33(7): 1138-1151.
[2] 蒋炳炎, 彭涛, 袁帅, 周明勇. 微流控芯片上的颗粒被动聚焦技术[J]. 化学进展, 2021, 33(10): 1780-1796.
[3] 李慧调, 潘建章, 方群. 数字PCR技术的发展及应用[J]. 化学进展, 2020, 32(5): 581-593.
[4] 范昭璇, 赵亮, 张学记. 循环肿瘤DNA的检测:从数字化到测序[J]. 化学进展, 2019, 31(10): 1384-1395.
[5] 邓王平, 王丽华, 宋世平, 左小磊. 生物传感器在POCT中的应用研究[J]. 化学进展, 2016, 28(9): 1341-1350.
[6] 蒋艳, 徐溢, 王人杰, 苏喜, 董春燕. 新型纳米荧光探针在微流控细菌芯片检测中的应用[J]. 化学进展, 2015, 27(9): 1240-1250.
[7] 雷相阳, 邱宪波, 葛胜祥, 夏宁邵, 陈兴, 崔大付. 基于微流控芯片的CD4+T淋巴细胞计数检测[J]. 化学进展, 2015, 27(7): 870-881.
[8] 王晓萍, 洪夏云, 詹舒越, 黄子昊, 庞凯. 表面等离子体共振传感技术和生物分析仪[J]. 化学进展, 2014, 26(07): 1143-1159.
[9] 郝丽, 徐春秀, 程和勇, 刘金华, 殷学锋*. 微流控芯片测定单细胞内化学组分的进展[J]. 化学进展, 2012, 24(08): 1544-1553.
[10] 项楠, 朱晓璐, 倪中华. 惯性效应在微流控芯片中的应用[J]. 化学进展, 2011, 23(9): 1945-1958.
[11] 黄华璠, 梁坤, 刘玉鹏, 黄士堂, 褚泰伟. F-18标记放射性药物的新方法与新技术[J]. 化学进展, 2011, 23(7): 1501-1506.
[12] 瞿祥猛, 林荣生, 陈宏. 基于微流控芯片的微阵列分析[J]. 化学进展, 2011, 23(01): 221-230.
[13] 胡娟 张春阳. 应用于基因分析的最新SERS技术*[J]. 化学进展, 2010, 22(08): 1641-1647.
[14] 沈玉勤 姚波 方群. 磁场控制技术在微流控芯片中的应用*[J]. 化学进展, 2010, 22(01): 133-139.
[15] 姜萍,屈锋,谭信,李勤,耿利娜,邓玉林. 基于微流控芯片电泳的生物分子间相互作用研究*[J]. 化学进展, 2009, 21(09): 1895-1904.
阅读次数
全文


摘要

数字PCR技术进展