English
新闻公告
More
化学进展 前一篇   后一篇

• 综述与评论 •

纳米粒子的分类合成及其在生物领域的应用

陈梦君, 杨万泰, 尹梅贞*   

  1. 北京化工大学材料科学与工程学院 化工资源有效利用国家重点实验室 碳纤维及功能高分子教育部重点实验室 北京 100029
  • 收稿日期:2012-05-01 修回日期:2012-08-01 出版日期:2012-12-24 发布日期:2012-12-11
  • 通讯作者: 尹梅贞 E-mail:yinmz@mail.buct.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.21174012, 51103008, 51221002)和教育部“新世纪优秀人才”支持计划(NCET-10-0215)资助

Synthesis and Applications of Nanoparticles in Biology

Chen Mengjun, Yang Wantai, Yin Meizhen*   

  1. State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fibers and Functional Polymers of Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
  • Received:2012-05-01 Revised:2012-08-01 Online:2012-12-24 Published:2012-12-11
纳米粒子是当今最受关注也是最常报道的一类纳米材料,尺寸处于纳米级别是纳米粒子的突出特点,这赋予其在化学、光学、电学和磁学等方面优于传统块体材料的独特性能,因而纳米粒子越来越受到人们的重视,并广泛应用于很多领域,尤其是生物医药领域。本文围绕可生物应用的纳米粒子,从组成以及结构的角度着手,将纳米粒子分为有机纳米粒子、无机纳米粒子以及有机/无机杂化纳米粒子。同时结合近三年国内外关于各类纳米粒子新颖的合成报道,分别阐述了上述不同种类纳米粒子所具有的适合生物应用的物理和化学方面的特征,并针对不同类别的新型纳米粒子,着重描述了其具体合成方法和潜在的生物应用。最后,简单介绍了纳米粒子在生命科学这一领域的具体应用实例,如刺激响应感应器、生物特异性标记及基因药物载体等,并展望了纳米粒子在该领域的长远发展。
Nanoparticles have attracted much attention and already been extensively applied in many areas in the last decade. Due to nano-scaled sizes, nanoparticles exhibit various outstanding properties that differ from those of bulk materials, such as unique performances in fields of chemistry, photology, electricity, magnetism and so on. This review summerizes their classifications based on the different compositions and structures, i.e. organic nanoparticles, inorganic nanoparticles and organic/inorganic hybrid nanoparticles. The review focuses on the synthetic methods of different types of nanoparticles, particularly ones could be applied in biology. In addition, the unique physical and chemical features of the classified nanoparticles, which would be helpful for their biological applications, are clarified respectively. Because of their excellent properties such as large superficial area, high surface energy, environmental sensitivity and biocompatibility, nanoparticles have been widely used in various fields such as photoelectricity, chemistry, biotechnology and so on. We highlight the biological applications of the nanoparticles and introduce some specific examples of stimuli responsive sensors, bio-specific labeling, gene/drug deliveries and so on. At last we propose the prospects of the nanoparticles. Contents
1 Introduction
2 Classifications of nanoparticles
2.1 Organic nanoparticles
2.2 Inorganic nanoparticles
2.3 Organic/inorganic hybrid nanoparticles
3 Applications of nanoparticles in biology
3.1 Stimuli responsive sensors
3.2 Targeting and separation of living cells
3.3 Biological specific labeling
3.4 Drug/gene deliveries
3.5 Bio-sensors
4 Conclusions and outlook

中图分类号: 

()
[1] Mohanraj V, Chen Y. Trop. J. Pharm. Res., 2007, 5: 561-573
[2] Whitesides G M. Small, 2005, 1: 172-179
[3] Farokhzad O C, Langer R. ACS Nano, 2009, 3: 16-20
[4] LaVan D A, McGuire T, Langer R. Nat. Biotechnol., 2003, 21: 1184-1191
[5] Whitesides G M. Nat. Biotechnol., 2003, 21: 1161-1165
[6] Hu S, Guo Y, Liu W, Bai P, Sun J, Cao S. J. Phys. Chem. Solids, 2011, 72: 749-754
[7] Posthuma-Trumpie G A, Wichers J H, Koets M, Berendsen L B J M, van Amerongen A. Anal. Bioanal. Chem., 2012, 402: 593-600
[8] Liu H, Ye T, Mao C. Angew. Chem. Int. Ed., 2007, 46: 6473-6475
[9] Zhang S, Song H, Guo P, Zhou J, Chen X. Carbon, 2010, 48: 4211-4214
[10] Li H, Zhang Y, Wang L, Tian J, Sun X. Chem. Commun., 2010, 961-963
[11] Yao C, Shin Y, Wang L Q, Windisch C F Jr, Samuels W D, Arey B W, Wang C, Risen W M Jr, Exarhos G J. J. Phys. Chem. C, 2007, 111: 15141-15145
[12] Ryu J, Suh Y W, Suh D J, Ahn D J. Carbon, 2010, 48: 1990-1998
[13] Wesolowski M, Kuzmin S, Moores B, Wales B, Karimi R, Zaidi A, Leonenko Z, Sanderson J, Duley W. Carbon, 2011, 49: 625-630
[14] Shin Y, Wang L Q, Bae I T, Arey B W, Exarhos G J. J. Phys. Chem. C, 2008, 112: 14236-14240
[15] Dai X, Zhang X, Meng Y, Shen P. New Carbon Mater., 2011, 26: 389-395
[16] Chen R, Ratnikova T A, Stone M B, Lin S, Lard M, Huang G, Hudson J A S, Ke P C. Small, 2010, 6: 612-617
[17] Fang Y, Guo S, Li D, Zhu C, Ren W, Dong S, Wang E. ACS Nano, 2012, 6: 400-409
[18] Zhang S, He Q, Li R, Wang Q, Hu Z, Liu X, Chang X. Mater. Lett., 2011, 65: 2371-2373
[19] Li H, Zhai J, Tian J, Luo Y, Sun X. Biosens. Bioelectron., 2011, 26: 4656-4660
[20] Thickett S C, Gilbert R G. Polymer, 2007, 48: 6965-6991
[21] Asua J M. J. Polym. Sci. Part A: Polym. Chem., 2004, 42: 1025-1041
[22] Muñoz-Bonilla A, van Herk A M, Heuts J P A. Macromolecules, 2010, 43: 2721-2731
[23] Garay-Jimenez J C, Gergeres D, Young A, Lim D V, Turos E. Nanomed. Nanotechnol. Biol. Med., 2009, 5: 443-451
[24] Akgöl S, Öztürk N, Denizli A. J. Appl. Polym. Sci., 2010, 115: 1608-1615
[25] Liu G, Liu P. Colloids Surf. A, 2010, 354: 377-381
[26] Baruch-Sharon S, Margel S. Colloid. Polym. Sci., 2010, 288: 869-877
[27] Jiang X, Dausend J, Hafner M, Musyanovych A, Röcker C, Landfester K, Mailänder V, Nienhaus G U. Biomacromolecules, 2010, 11: 748-753
[28] Norakankorn C, Pan Q, Rempel G L, Kiatkamjornwong S. J. Appl. Polym. Sci., 2010, 116: 1291-1298
[29] Shah S, Pal A, Gude R, Devi S. Eur. Polym. J., 2010, 46: 958-967
[30] Gao D, Xu H, Philbert M A, Kopelman R. Angew. Chem. Int. Ed., 2007, 46: 2224-2227
[31] Zhang K, Gui Z, Chen D, Jiang M. Chem. Commun., 2009, 6234-6236
[32] Ouadahi K, Allard E, Oberleitner B, Larpent C. J. Polym. Sci. Part A: Polym. Chem., 2012, 50: 314-328
[33] McCarthy J R, Perez J M, Brückner C, Weissleder R. Nano Lett., 2005, 5: 2552-2556
[34] Zhang J, Xu S, Kumacheva E. J. Am. Chem. Soc., 2004, 126: 7908-7914
[35] Duan J H, Wang K M, Tan W H, He X X, He C M, Liu B, Li D, Huang S S, Yang X H, Mo Y Y. Chem. Res. Chin. Univ., 2003, 24: 255-259
[36] 张海龙(Zhang H L), 林建强(Lin J Q). 西北药学杂志(Northwest Pharmaceutical Journal), 2007, 22: 3-4
[37] Lee M, Cho Y W, Park J H, Chung H, Jeong S Y, Choi K, Moon D H, Kim S Y, Kim I S, Kwon I C. Colloid. Polym. Sci., 2006, 284: 506-512
[38] Jeffery H, Davis S S, O'Hagan D T. Pharm. Res., 1993, 10: 362-368
[39] Niwa T, Takeuchi H, Hino T, Kunou N, Kawashima Y. J. Control. Rel., 1993, 25: 89-98
[40] Quintanar-Guerrero D, Allemann E, Doelker E, Fessi H. Colloid. Polym. Sci., 1997, 275: 640-647
[41] Quintanar-Guerrero D, Allémann E, Doelker E, Fessi H. Pharm. Res., 1998, 15: 1056-1062
[42] Cohen-Sela E, Chorny M, Koroukhov N, Danenberg H D, Golomb G. J. Control. Rel., 2009, 133: 90-95
[43] Musumeci T, Ventura C, Giannone I, Ruozi B, Montenegro L, Pignatello R, Puglisi G. Int. J. Pharm., 2006, 325: 172-179
[44] Ribeiro H S, Chu B S, Ichikawa S, Nakajima M. Food Hydrocolloids, 2008, 22: 12-17
[45] Mishima K. Adv. Drug Delivery Rev., 2008, 60: 411-432
[46] Sun Y P, Meziani M J, Pathak P, Qu L. Chem. Eur. J., 2005, 11: 1366-1373
[47] Chung J W, Lee K A, Neikirk C, Nelson C M, Priestley R D. Small, 2012, 8: 1693-1700
[48] Xie H, She Z, Wang S, Sharma G, Smith J W. Langmuir, 2012, 28: 4459-4463
[49] Qian L, Ahmed A, Zhang H. Chem. Commun., 2011, 10001-10003
[50] Wu Z M, Guo X D, Zhang L J, Jiang W, Ling L, Qian Y, Chen Y. Colloids Surf. B, 2012, 94: 206-212
[51] Hui G, Ma Y, Lu X, Liang Y, Chen B, Ma J. Eur. Polym. J., 2011, 47: 1232-1239
[52] Liu Y, Wang Y, Zhuang D, Yang J. J. Colloid Interface Sci., 2012, 377: 197-206
[53] Wu A, Jia J, Luan S. Colloids Surf. A, 2011, 384: 180-185
[54] Yin B, Hakkarainen M. J. Mater. Chem., 2011, 21: 8670-8677
[55] Lu M, He B, Wang L, Ge W, Lu Q, Liu Y, Zhang L. Composites Part B, 2011, 43: 50-56
[56] Peng S, Tian L, Liang J, Mhaisalkar S G, Ramakrishna S. ACS Appl. Mat. Interfaces, 2011, 4: 397-404
[57] Zhang C, Zhu B, Lee L J. Polymer, 2011, 52: 1847-1855
[58] Gavory C, Durand A, Six J L, Nouvel C, Marie E, Leonard M. Carbohydr. Polym., 2011, 84: 133-140
[59] Wiest L A, Jensen D S, Hung C H, Olsen R E, Davis R C, Vail M A, Dadson A E, Nesterenko P N, Linford M R. Anal. Chem., 2011, 83: 5488-5501
[60] Sheng X, Qian Y. J. Nanosci. Nanotechnol., 2010, 10: 8307-8311
[61] Sharma S, Ahmad N, Prakash A, Singh V N, Ghosh A K, Mehta B R. Materials Sciences and Applications, 2010, 1: 1-7
[62] Hussain I, Graham S, Wang Z, Tan B, Sherrington D C, Rannard S P, Cooper A I, Brust M. J. Am. Chem. Soc., 2005, 127: 16398-16399
[63] Liu J, Chang M J, Gou X C, Xu Z G, Zhang H L. Colloids Surf. A, 2012, 404: 112-118
[64] Zhang H T, Ding J, Chow G M, Ran M, Yi J B. Chem. Mater., 2009, 21: 5222-5228
[65] Zhong L S, Hu J S, Cui Z M, Wan L J, Song W G. Chem. Mater., 2007, 19: 4557-4562
[66] Wang J. Microchim. Acta, 2012, 177: 245-270
[67] Skrabalak S E, Chen J, Sun Y, Lu X, Au L, Cobley C M, Xia Y. Acc. Chem. Res., 2008, 41: 1587-1595
[68] Gang T, Yildirim O, Kinge S, Duan X, Reinhoudt D, Blank D, Rijnders G, van der Wiel W, Huskens J. J. Mater. Chem., 2011, 21: 14800-14806
[69] Wi J S, Barnard E S, Wilson R J, Zhang M, Tang M X, Brongersma M L, Wang S X. ACS Nano, 2011, 5: 6449-6457
[70] Barbillon G, Hamouda F, Held S, Gogol P, Bartenlian B. Microelectron. Eng., 2010, 87: 1001-1004
[71] Zdansky K, Yatskiv R. Sens. Actuators B, 2012, 165: 104-109
[72] Cao J, Xu R, Tang H, Tang S, Cao M. Sci. Total Environ., 2011, 409: 2336-2341
[73] Song Y, Ma Y, Wang Y, Di J, Tu Y. Electrochim. Acta, 2010, 55: 4909-4914
[74] Hou X, Zhang X, Chen S, Kang H, Tan W. Colloids Surf. A, 2012, 403: 148-154
[75] Wu S, Sun A, Zhai F, Wang J, Xu W, Zhang Q, Volinsky A A. Mater. Lett., 2011, 65: 1882-1884
[76] Azarkharman F, Saievar I E, Sebt S A. Appl. Surf. Sci., 2012, 258: 5765-5769
[77] Bera S, Singh S B, Ray S. J. Solid State Chem., 2011, 189: 75-79
[78] Raji V, Chakraborty M, Parikh P A. Ind. Eng. Chem. Res., 2012, 51: 5691-5698
[79] Wang Y, Chen L, Liu P. Chem. Eur. J., 2012, 18: 5935-5943
[80] Pöselt E, Schmidtke C, Fischer S, Peldschus K, Salamon J, Kloust H, Tran H, Pietsch A, Heine M, Adam G. ACS Nano, 2012, 6: 3346-3355
[81] Alam R, Maye M M. Inorg. Chim. Acta, 2011, 380: 114-117
[82] Liu J, Liu X, Kong X, Zhang H. J. Solid State Chem., 2012, 190: 98-103
[83] Song Y, Tian Q, Zou R, Chen Z, Yang J, Hu J. J. Alloys Compd., 2011, 509: 6539-6544
[84] Lima J E, Winkler E L, Tobia D, Troiani H E, Zysler R D, Agostinelli E, Fiorani D. Chem. Mater., 2012, 24: 512-516
[85] Qin H, Jian W, Zhang Y, Kim T, Jiang Z, Jiang D, Sun D. Mater. Lett., 2012, 67: 28-31
[86] Wang Z L, Hao J, Chan H L W, Law G L, Wong W T, Wong K L, Murphy M B, Su T, Zhang Z, Zeng S. Nanoscale, 2011, 3: 2175-2181
[87] Song Q, Zhang Z J. J. Am. Chem. Soc., 2012, 134: 10182-10190
[88] Landfester K. Angew. Chem. Int. Ed., 2009, 48: 4488-4507
[89] Morimoto N, Endo T, Ohtomi M, Iwasaki Y, Akiyoshi K. Macromol. Biosci., 2005, 5: 710-716
[90] Caruso R A, Susha A, Caruso F. Chem. Mater., 2001, 13: 400-409
[91] Imhof A. Langmuir, 2001, 17: 3579-3585
[92] Yang Z, Niu Z, Lu Y, Hu Z, Han C C. Angew. Chem. Int. Ed., 2003, 42: 1943-1945
[93] Otsubo Y, Edamura K. J. Colloid Interface Sci., 1994, 168: 230-234
[94] Ethirajan A, Landfester K. Chem. Eur. J., 2010, 16: 9398-9412
[95] Tierno P, Goedel W A. J. Phys. Chem. B, 2006, 110: 3043-3050
[96] 段春英(Duan C Y), 周静芳(Zhou J F). 化学研究(Chemical Research), 2003, 14: 18-20
[97] Snchez-Iglesias A, Grzelczak M, Rodríguez-Gonzlez B, Guardia-Girós P, Pastoriza-Santos I, Perez-Juste J, Prato M, Liz-Marzn L M. ACS Nano, 2009, 3: 3184-3190
[98] Yuan L, Hua X, Wu Y, Pan X, Liu S. Anal. Chem., 2011, 83: 6800-6809
[99] Zhou L, Yuan W, Yuan J, Hong X. Mater. Lett., 2008, 62: 1372-1375
[100] Hain J, Schrinner M, Lu Y, Pich A. Small, 2008, 4: 2016-2024
[101] Hoffmann M, Lu Y, Schrinner M, Ballauff M, Harnau L. J. Phys. Chem. B, 2008, 112: 14843-14850
[102] Lu Y, Yuan J, Polzer F, Drechsler M, Preussner J. ACS Nano, 2010, 4: 7078-7086
[103] Lu Y, Wittemann A, Ballauff M. Macromol. Rapid Commun., 2009, 30: 806-815
[104] Yuan J, Schacher F, Drechsler M, Hanisch A, Lu Y, Ballauff M, Müller A H E. Chem. Mater., 2010, 22: 2626-2634
[105] Du J, Chen Y. Angew. Chem. Int. Ed., 2004, 43: 5084-5087
[106] Kim J S, Rieter W J, Taylor K M L, An H, Lin W. J. Am. Chem. Soc., 2007, 129: 8962-8963
[107] Hasegawa U, Nomura S M, Kaul S C, Hirano T, Akiyoshi K. Biochem. Biophys. Res. Commun., 2005, 331: 917-921
[108] Xia Y, Zhou Y, Tang Z. Nanoscale, 2011, 3: 1374-1382
[109] Ariga K, Ji Q, McShane M J, Lvov Y M, Vinu A, Hill J P. Chem. Mater., 2011, 24: 728-737
[110] Parveen S, Misra R, Sahoo S K. Nanomed. Nanotechnol. Biol. Med., 2012, 8: 147-166
[111] Chah S, Hammond M R, Zare R N. Chem. Biol., 2005, 12: 323-328
[112] Karg M, Lu Y, Carbó-Argibay E, Pastoriza-Santos I, Prez-Juste J, Liz-Marzn L M, Hellweg T. Langmuir, 2009, 25: 3163-3167
[113] Singh N, Lyon L A. Chem. Mater., 2007, 19: 719-726
[114] Majewski A P, Schallon A, Jerome V, Freitag R, Mueller A H E, Schmalz H. Biomacromolecules, 2012, 13: 857-866
[115] Fan Z, Shelton M, Singh A K, Senapati D, Khan S A, Ray P C. ACS Nano, 2012, 6: 1065-1073
[116] Cui Y R, Hong C, Zhou Y L, Li Y, Gao X M, Zhang X X. Talanta, 2011, 85: 1246-1252
[117] Yin M, Shen J, Pflugfelder G O, Müllen K. J. Am. Chem. Soc., 2008, 130: 7806-7807
[118] Yin M, Bauer R, Klapper M, Müllen K. Macromol. Chem. Phys., 2007, 208: 1646-1656
[119] Yin M, Shen J, Gropeanu R, Pflugfelder G O, Weil T, Müllen K. Small, 2008, 4: 894-898
[120] Yin M, Shen J, Pisula W, Liang M, Zhi L, Müllen K. J. Am. Chem. Soc., 2009, 131: 14618-14619
[121] Wang L, Xia T, Liu J, Chen H, Dong L, Bian G. Spectrochim. Acta Part A, 2005, 62: 565-569
[122] Patel T, Zhou J, Piepmeier J M, Saltzman W M. Adv. Drug Delivery Rev., 2011, 64: 701-705
[123] Riedinger A, Pernia L M, Deka S, George C, Franchini I R, Falqui A, Cingolani R, Pellegrino T. Nano Lett., 2011, 11: 3136-3141
[124] Rahimi M, Wadajkar A, Subramanian K, Yousef M, Cui W, Hsieh J T, Nguyen K T. Nanomed. Nanotechnol. Biol. Med., 2010, 6: 672-680
[125] Shen J M, Guan X M, Liu X Y, Lan J F, Cheng T, Zhang H X. Bioconjugate Chem., 2012, 23: 1010-1021
[126] Yan J, Korolev N, Eom K D, Tam J P, Nordenskiöld L. Biomacromolecules, 2012, 13: 124-131
[127] Yin M, Ding K, Gropeanu R A, Shen J, Berger R, Weil T, Müllen K. Biomacromolecules, 2008, 9: 3231-3238
[128] Yin M, Kuhlmann C R W, Sorokina K, Li C, Mihov G, Pietrowski E, Koynov K, Klapper M, Luhmann H J, Weil T. Biomacromolecules, 2008, 9: 1381-1389
[129] Du P, Mu B, Wang Y, Liu P. Mater. Lett., 2012, 75: 77-79
[130] Zhang J, Mi C, Wu H, Huang H, Mao C, Xu S. Anal. Biochem., 2011, 421: 673-679
[131] Yin M, Feng C, Shen J, Yu Y, Xu Z, Yang W, Knoll W, Müllen K. Small, 2011, 7: 1629-1643
[132] Dallaire A M, Rioux D, Rachkov O, Patskovsky S, Meunier M. J. Phys. Chem. C, 2012, 116: 11370-11377
[1] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[2] 杨冬, 高可奕, 杨百勤, 雷蕾, 王丽霞, 薛朝华. 微流控合成体系的装置分类及其用于纳米粒子的制备[J]. 化学进展, 2021, 33(3): 368-379.
[3] 罗贤升, 邓汉林, 赵江颖, 李志华, 柴春鹏, 黄木华. 多孔氮化石墨烯(C2N)的合成及应用[J]. 化学进展, 2021, 33(3): 355-367.
[4] 程倩, 于佳酩, 霍薪竹, 沈雨萌, 刘守新. 稀土氟化物上转换荧光增强及应用[J]. 化学进展, 2019, 31(12): 1681-1695.
[5] 刘一寰, 胡欣, 朱宁, 郭凯. 基于微流控技术制备微/纳米粒子材料[J]. 化学进展, 2018, 30(8): 1133-1142.
[6] 张咚咚, 刘敬民, 刘瑶瑶, 党梦, 方国臻, 王硕. 纳米粒子在药物传递中的应用[J]. 化学进展, 2018, 30(12): 1908-1919.
[7] 喻志超, 汤淳, 姚丽, 高庆, 徐祖顺, 杨婷婷. 聚合物基模板制备中空介孔材料[J]. 化学进展, 2018, 30(12): 1899-1907.
[8] 毕洪梅, 韩晓军. 磁应答型药物递送载体的设计与构建[J]. 化学进展, 2018, 30(12): 1920-1929.
[9] 吴锦钧, 杨震, 焦剑梅, 孙鹏飞, 范曲立, 黄维. 水溶性苝酰亚胺类材料的合成及其生物应用[J]. 化学进展, 2017, 29(2/3): 216-230.
[10] 李平, 董阿力德尔图, 孙梓嘉, 高歌. N-卤胺类高分子与纳米抗菌材料的制备及应用[J]. 化学进展, 2017, 29(2/3): 318-328.
[11] 陈璐扬, 赵瑾, 龙丽霞, 侯信, 原续波*. 肿瘤免疫治疗中的生物医用载体[J]. 化学进展, 2017, 29(10): 1195-1205.
[12] 杜鑫, 赵彩霞, 黄洪伟, 温永强, 张学记. 树枝状多孔二氧化硅纳米粒子的制备及其在先进载体中的应用[J]. 化学进展, 2016, 28(8): 1131-1147.
[13] 郝锐, 张丛筠, 卢亚, 张东杰, 郝耀武, 刘亚青. 氧化石墨烯/金银纳米粒子复合材料的制备及其SERS效应研究[J]. 化学进展, 2016, 28(8): 1186-1195.
[14] 邱健豪, 何明, 贾明民, 姚建峰. 金属有机骨架材料制备双金属或多金属催化材料及其应用[J]. 化学进展, 2016, 28(7): 1016-1028.
[15] 王昀, 冯岸超, 袁金颖. 刺激响应聚合物在金纳米粒子催化体系中的应用[J]. 化学进展, 2016, 28(7): 1054-1061.